Simple exploration of 99395-88-7

99395-88-7 (S)-4-Phenyloxazolidin-2-one 730424, aoxazolidine compound, is more and more widely used in various fields.

99395-88-7, (S)-4-Phenyloxazolidin-2-one is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

In anhydrous and oxygen-free environment, 36g of 4-[2-(4-fluoro-phenyl)-[1,3]dithiacyclolan-2-yl]-butyric acid (IV) was added and 300ml of dichloromethane was added. Add 50ml triethylamine,A mixture of 20 ml of pivaloyl chloride and 50 ml of tetrahydrofuran was added dropwise at a temperature of -20C to -10C and reacted for 2 hours. Add 6.4g of anhydrous lithium chloride and stir for 2 hours.27g 4-phenyl-2-oxazolidone was added and the reaction mixture was stirred for 5-7 h.The intermediate VI was extracted and crystallized. The yield was 96.1%., 99395-88-7

99395-88-7 (S)-4-Phenyloxazolidin-2-one 730424, aoxazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; Shandong New Age Pharmaceutical Co., Ltd.; Zhang Guimin; Zang Chao; Xia Mingjun; (16 pag.)CN107488190; (2017); A;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Downstream synthetic route of 90319-52-1

As the paragraph descriping shows that 90319-52-1 is playing an increasingly important role.

90319-52-1, (R)-4-Phenyloxazolidin-2-one is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of Preparation 11-1(1.4g. 4.8 mmoi) in THF (15 mL) was added NEt3 (1.3 mL, 9.6 mmoi). The reaction mixture was cooled to 0 ¡ãC and trimethylacetyl chloride (0.7 13 inL, 5.8 mmoi) was added dropwise and the resulting solution stirred for 30 mm at 0 ¡ãC. In a separate flask, (R)-4-phenyioxazolidin-2-one (3. 101 g, 6.24 mmoi) in THF (45 rnL) at 0¡ãC was treated with 1 M Lil-{MDS solution in THF (dropwise addition of 624 mL, 6.24 mmoi) and stirred at 0¡ãC. The lithiate was added via cannula to the first flask. The reaction mixture was allowed to warm to rt and was stirred fbr 3 hours. LC/MS indicated the complete consumption of the starting carboxylic acid and formation of the desired imide. The reaction mixture was poured onto saturated aqueous ammoniurn chloride (50 mL) and the layers were separated. The aqueous layer was extracted with EtOAc (3 x 50 mL). The combined organic extracts were dried over anhydrous sodium sulfate and chromatographed on silica using EtOAc/Hexanes 0 to 100percent gradient to give Preparation 11 as a white foam in 83percent yield, rn/z M¡ÀH) = 433.3. H-NMR (400 Ml-Iz; CDCl): 8.80 (d, J::: 4.5 Hz, 1H, 8.11 (dd, J:::: 9.1, 5.7 Hz, 1H). 7.63 (dd, J 10.5, 2.5 Hz. 1H), 7.48-7.43 (in, IH), 7.40-7.30 (m, 6H), 5.47-5.44 (m, 1H), 4.71 (t, J= 8.9 Hz, 1H). 4.31- 4.28 (m. 1FI). 3.20-3.11 (in, 3H). 2.49-2.46 (m, IH), 1.82-1.67 (in. 6H)., 90319-52-1

As the paragraph descriping shows that 90319-52-1 is playing an increasingly important role.

Reference£º
Patent; BRISTOL-MYERS SQUIBB COMPANY; CHERNEY, Emily Charlotte; SHAN, Weifang; ZHANG, Liping; NARA, Susheel Jethanand; HUANG, Audris; BALOG, James Aaron; (129 pag.)WO2018/39512; (2018); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Some tips on 90319-52-1

90319-52-1 (R)-4-Phenyloxazolidin-2-one 730425, aoxazolidine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.90319-52-1,(R)-4-Phenyloxazolidin-2-one,as a common compound, the synthetic route is as follows.

General procedure: To a solution of 15a (19.0 g, 107 mmol) in THF (300 mL) cooled to -78 C was added n-butyllithium (47.2 mL, 118 mmol, 2.5 M solution in hexane) dropwise. The resulting solution was stirred at this temperature for 20 min before the dropwise addition of propionic anhydride (15.1 mL, 118 mmol). The cooling bath was removed, and the flask was allowed to slowly warm to room temperature and stir for an additional hour whereupon LCMS indicated reaction completion. The reaction was quenched with the addition of sat. NH4Cl. Volatiles were removed in vacuo, and the resulting residue was diluted with DCM. The layers were separated, and the organic layer was washed with water x 2, 1 M NaOH, brine, dried over MgSO4, filtered, and concentrated in vacuo to afford the desired product as a white solid (23.6 g, 94% yield). Spectral data were in accordance with reported literature values.3, 90319-52-1

90319-52-1 (R)-4-Phenyloxazolidin-2-one 730425, aoxazolidine compound, is more and more widely used in various fields.

Reference£º
Article; Reed, Carson W.; Fulton, Mark G.; Nance, Kellie D.; Lindsley, Craig W.; Tetrahedron Letters; vol. 60; 10; (2019); p. 743 – 745;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Analyzing the synthesis route of 99395-88-7

The synthetic route of 99395-88-7 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.99395-88-7,(S)-4-Phenyloxazolidin-2-one,as a common compound, the synthetic route is as follows.

To (S)- (+)-4-PHENYL-2-OXAZOLIDINONE (9.88 g, 60 mmol) in THF (150 mL) AT-78C, was added n-butyl lithium (37.7 mL, 1. 6M in hexanes, 60 mmol) over a period of 30 minutes. THF (50 mL) was added to the resultant thick suspension and the reaction mixture allowed to warm up to facilitate stirring. Trans-cinnamoylchloride (11.5 g, 69 mmol) in THF (30 mL) was added dropwise. The’reaction was stirred at room temperature overnight. The reaction mixture was quenched with a saturated ammonium chloride solution (50. ML) and stirred for 0.5h. The solvent was removed in vacuo, the residue dissolved in ethyl acetate, washed with water (300 mL), 5% sodium bicarbonate (200 mL) and brine (100 mL) and dried over sodium sulfate. The solvent was removed in vacuo to give a pale yellow solid. The compound was crystallized from ETHYLACETATE and washed with hexanes to give 17.12 g (97%) of (S)-4- PHENYL-3- [ (E)- (3-PHENYL-ACRYLOYL)]-OXAZOLIDIN-2-ONE. H NMR (400 MHz, CDC13) : 8 [ppm] 7.92 (d, 1H), 7. 77 (d, 1H), 7.59 (m, 2H), 7.40-7. 35 (m, 8H), 5.55 (dd, 1H), 4.74 (t, 1H) ; 4.31 (DD,. 1H)., 99395-88-7

The synthetic route of 99395-88-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; VIROCHEM PHARMA INC.; WO2005/23809; (2005); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

New learning discoveries about 90319-52-1

As the paragraph descriping shows that 90319-52-1 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.90319-52-1,(R)-4-Phenyloxazolidin-2-one,as a common compound, the synthetic route is as follows.

To a solution of bromoethynylbenzene (1.4 g, 8.0 mmol) in 24 mL of anhydrous toluene in a reaction vial were added methyl phenylcarbamate (1.5 g, 9.6 mmol), K3PO4 (3.4 g, 16 mmol), copper sulfate-pentahydrate (400 mg, 16 mmol), and 1,10-phenanthroline (577 mg, 3.2 mmol). The reaction mixtures was capped under an argon atmosphere, and heated in an oil bath at 80 ?C for 15 h. The progress of the reaction was monitored using TLC analysis. Upon completion, the reaction mixture was allowed to cool to room temperature, and diluted with 15 mL of ethyl acetate. The mixture was filtered through a pad of celite, and the filtrate was concentrated in vacuo. The crude residue was purified by column chromatography with eluent of Hexane/ ethyl acetate = 19/1 to give 1.6 g of 1 in 80 percent yield as a yellow oil. 1H NMR (400 MHz, CDCl3) delta 7.55 (dd, J = 1.2, 8.6 Hz, 2H), 7.45-7.40 (m, 4H), 7.33-7.28 (m, 4H), 3.92 (s, 3H). 13C NMR. (100 MHz, CDCl3) delta 154.9, 139.7, 131.5, 129.1, 128.4, 128.0, 127.2, 124.8, 123.0, 83.0, 70.3, 54.5.#10;, 90319-52-1

As the paragraph descriping shows that 90319-52-1 is playing an increasingly important role.

Reference£º
Article; Sato, Akihiro H.; Ohashi, Kazuhiro; Iwasawa, Tetsuo; Tetrahedron Letters; vol. 54; 10; (2013); p. 1309 – 1311;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

New learning discoveries about 99395-88-7

99395-88-7, As the paragraph descriping shows that 99395-88-7 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.99395-88-7,(S)-4-Phenyloxazolidin-2-one,as a common compound, the synthetic route is as follows.

(2) nitrogen protection, will (S)-4 – phenyl -2 oxazolidone (2.5 kg, 15.3 muM) is added to the in tetrahydrofuran (20L), stirring and dissolving, control the temperature of the reaction solution in the 15 – 25 C, batch repeatedly added 60% NaH (625g, 15.6 muM). Feeding after completely, adds by drops differently pivaloyl chloride (1.9 kg, 15.8 muM), to maintain the temperature of the reaction solution is lower than the 30 C. Dropping after completely, thermal insulation reaction 30min. TLC monitoring raw material the reaction is complete. The reaction liquid slowly poured into saturated NH4Cl (40L) in aqueous solution quenching, and the room temperature stirring reaction 2h, layered, separating the organic phase, the aqueous layer and then the extraction of ethyl acetate (15L ¡Á 2), the combined organic layer, steaming and to dry. In the concentrate is added to the petroleum ether (4L), full mixing, filtering, results in the type (I – S) compound of formula 3.41 kg. The yield is 90%.

99395-88-7, As the paragraph descriping shows that 99395-88-7 is playing an increasingly important role.

Reference£º
Patent; Borui Bio-pharmaceutical (Suzhou) Co., Ltd.; Yuan Jiandong; Liu Wei; Ma Shimin; (29 pag.)CN104058990; (2017); B;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

New learning discoveries about 147959-19-1

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps. you can also browse my other articles about147959-19-1

147959-19-1, The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 147959-19-1, name is (S)-tert-Butyl 2,2-dimethyl-4-(2-oxoethyl)oxazolidine-3-carboxylate. A new synthetic method of this compound is introduced below.

With key building block 6 in hand, its nitroaldol (Henry) reaction with nitromethane was examined (Table 1). LiAlH418- TBAF19- as well as t-BuOK20-catalyzed Henry reactions led to nitro alcohols 12 and 13 with low diastereoselectivity, reflecting that the existing stereogenic center is too far away from the newly created one to exert appreciable asymmetric induction (Table 1, entries 1-3).21 An obvious way of resolving this problem was the introduction of additional chiral information, i.e. application of a chiral catalyst. In fact double stereodifferentiation using Shibasaki’s well established heterobimetallic (,S)-BINOL catalyst 1422 (5 mol%, THF, -40 C, 3 d) led to 12 with high diastereoselectivity albeit in low yield (Table 1, entry 4).Recently, other highly efficient chiral catalysts for asymmetric Henry reactions have been developed. Thus, Corey23 and Maruoka24 have utilized chiral quaternary ammonium fluorides as catalysts while Trost25 has presented a dinuclear zinc catalyst. Salen-cobalt(II) complexes have been used by Yamada whereas J¡ãrgensen and Evans have introduced bis(oxazoline)-coprhoer(II) complexes. The latter seemed to be the catalysts of choice, at least for aliphatic aldehydes, with respect to attainable yields and degree of stereoselectivity. EPO Table 1. Diastereoselective Henry Reaction of Aldehyde 6 with Nitromethaneyield ratio0 entry catalyst conditions(%)a 12:131 LiAlH4 THF, rt 53 56:442 TBAF THF, rt 33 43:573 r-BuOK t- 72 23:77BuOH/THF,00C4 14 THF, -40 C 45 98:25 {Cu[(+> EtOH, rt 87 92:815]} (OAc)26 (CuK-)- EtOH, rt 85 9:9115]}(OAc)27 {Cu[(+> EtOH, rt 94 97:316]}(OAc)28 (Cu[(-)- EtOH, rt 91 8:9216I)(OAc)2a isolated yield b determined by HPLC analysis of crude reaction mixtures EPO Indeed application of Evans’ bis(oxazoline) copper(II) acetate-based catalysts {Cu[(+)- 15]}(OAc)2 and in particular {Cu[(+)-16]}(OAc)2 (5 mol%, EtOH, rt, 5 d) gave the desired nitro alcohol 12 both with high diastereoselectivity and in high yield (Table 1 , entries 5 and 7). Finally, to obtain selectively diastereomer 13, aldehyde 6 was reacted with nitromethane in the presence of the enantiomeric catalysts {Cu[(-)-15]}(OAc)2 and {Cu[(-)-16]} (OAc)2 respectively. In these cases slightly lower stereoselectivities and yields were observed reflecting a mismatched pairing (Table 1, entries 6 and 8).

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps. you can also browse my other articles about147959-19-1

Reference£º
Patent; LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN; WO2006/94770; (2006); A2;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Analyzing the synthesis route of 99395-88-7

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 99395-88-7, if you are interested, you can browse my other articles.

99395-88-7, A balanced equation for a chemical reaction indicates what is reacting and what is produced, but it reveals nothing about how the reaction actually takes place. The reaction mechanism is the process, or pathway, by which a reaction occurs.3663-80-7. An updated downstream synthesis route of 3663-80-7 as follows.

Example 21 (S,E)-3-(pent-2-enoyl)-4-phenyl oxazolidin-2-one The 4S-phenyl-2-oxazolidinone (5.6 g, 34.4 mmol) was placed in a three-necked flask, after it was purged with nitrogen, tetrahydrofuran was added and it was cooled to -78 C., then n-butyl lithium (1.6M, 22 ml, 35.4 mmol) was added dropwise, and the reaction was carried out for 30 minutes. After that, a solution of 2-pentenoyl chloride (4.2 g, 35.5 mmol) in tetrahydrofuran was added dropwise, and the reaction was continued for 30 minutes, then it was slowly raised to 0 C., the reaction was continued for 2 hours and quenched with saturated ammonium chloride solution. The reaction solution was then concentrated to remove tetrahydrofuran and extracted with ethyl acetate 3 times, then the organic phases were combined, washed with saturated brine, dried over anhydrous sodium sulfate, concentrated, and recrystallized with petroleum ether and ethyl acetate to give a white solid 8 g, yield: 95%. 1HNMR (300 MHz, CDCl3): delta 7.3-7.4 (5H, m), 7.1-7.2 (1H, m), 6.9-7.1 (1H, m), 5.5 (1H, dd, J=4.2, 19.0), 4.8 (1H, t, J=9.6, 18.7), 4.2 (1H, dd, J=3.7, 18.9), 2.2 (2H, m), 1.0 (3H, t, J=7.4, 14.9). ESI-MS: 246.4 (M+H)., 99395-88-7

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 99395-88-7, if you are interested, you can browse my other articles.

Reference£º
Patent; Zhang, Qiang; Zhang, Rongxia; Tian, Guanghui; Li, Jianfeng; Zhu, Fuqiang; Jiang, Xiangrui; Shen, Jingshan; US2014/46074; (2014); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Some tips on 2346-26-1

Any one of these steps may be slow and thus may serve as the rate determining step. In general, however, in the presence of the catalyst, the overall rate of the reaction is faster than it would be if the reactants were in the gas or liquid phase.

2346-26-1, The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 2346-26-1, name is Oxazolidine-2,4-dione. A new synthetic method of this compound is introduced below.

A solution of 1.4 g (7.36 mmol) of 2-[4-(trifluoromethyl)phenyl]ethanol, 2.22 g (8.47 mmol) of triphenylphosphine and 0.82 g (8.1 mmol) of 1,3-oxazolidine-2,4-dione (J. Med. Chem. 1991, 34, 1542-1543) in 25 ml of tetrahydrofuran, cooled to approximately -10 C., is admixed dropwise under an inert atmosphere with a solution of 1.7 g (8.47 mmol) of diisopropyl azidocarboxylate (DIAD) in 5 ml of tetrahydrofuran, while maintaining the temperature of the reaction mixture between -10 C. and 0 C. Stirring is continued at 0 C. for 1 hour and then at 25 C. for 20 hours. The filtrate is concentrated under reduced pressure and the residue is taken up in dichloromethane and aqueous 5% sodium hydroxide solution (10 ml). The aqueous phase is separated and then extracted twice with dichloromethane. The organic phases are combined and washed in succession with aqueous hydrochloric acid solution (1N) and then saturated aqueous sodium hydrogencarbonate solution and saturated aqueous sodium chloride solution. The organic phase is dried over sodium sulphate and the filtrate is concentrated under reduced pressure. The residue thus obtained is purified by chromatography on silica gel, eluting with a 20/80 mixture of ethyl acetate and cyclohexane. This gives 1.5 g of oxazolidinedione in the form of an oil, 2346-26-1

Any one of these steps may be slow and thus may serve as the rate determining step. In general, however, in the presence of the catalyst, the overall rate of the reaction is faster than it would be if the reactants were in the gas or liquid phase.

Reference£º
Patent; Sanofi-Aventis; US2006/14830; (2006); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Analyzing the synthesis route of 95715-86-9

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps. you can also browse my other articles about95715-86-9

95715-86-9, The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 95715-86-9, name is Methyl (R)-N-Boc-2,2-dimethyloxazolidine-4-carboxylate. A new synthetic method of this compound is introduced below.

4-Hvdroxymethyl-2,2-dimethyl-oxazolidine-3-carboxylic acid tert-butyl ester (35b). A 250-ml two-necked flask was equipped with a magnetic stirring bar, reflux condenser bearing a drying tube and a dropping funnel. The flask was charged with tetrahydrofuran (100 ml) and lithium aluminium hydride (2.16 g, 57.0 mmol). While the suspension in the flask was stirred, a solution of the ester 12a (9.90 g, 38.2 mmol) in THF (50 ml) was added dropwise during 20 min. The reaction was monitored by thin layer chromatography. When the reaction was finished, the mixture was cooled in an ice bath and a solution of 10% potassium hydroxide (20 ml) was added dropwise during 10 min. The mixture was stirred for 2 h at room temperature, whereafter the white precipitate was removed by filtration through celite. The combined organic filtrates were washed with 100 ml of aqueous phosphate buffer (pH 7), and the aqueous layer was extracted with ether. The combined organic phases were dried and concentrated which gave the title compound (8.3 g, 94%). The residue was used without further purification.

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps. you can also browse my other articles about95715-86-9

Reference£º
Patent; MEDIVIR AB; WO2009/53277; (2009); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem