Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Article, Research Support, Non-U.S. Gov’t, Bioorganic Chemistry called Synthesis and biological evaluation of 6-phenylpurine linked hydroxamates as novel histone deacetylase inhibitors, Author is Chen, Dizhong; Soh, Chang Kai; Goh, Wei Huang; Wang, Zilong; Wang, Haishan, which mentions a compound: 5451-40-1, SMILESS is C2=NC1=C(C(=NC(=N1)Cl)Cl)[NH]2, Molecular C5H2Cl2N4, Formula: C5H2Cl2N4.
A series of 6-phenylpurine based hydroxamates I (R = morpholin-4-yl, diethylaminyl, dimethylaminyl, pyrrolidin-1-yl; R1 = Et, iso-Pr, Pr, cyclopentyl, pentan-3-yl; R2 = 3-[(hydroxycarbamoyl)methyl]oxidanyl, 4-[4-(hydroxycarbamoyl)butoxy]methyl, 3-[4-(hydroxycarbamoyl)piperidin-1-yl]methyl, etc.) have been designed, synthesized and evaluated. Compound I (R = morpholin-4-yl; R1 = isopropyl; R2 = 3-[3-(hydroxycarbamoyl)propyl]oxidanyl (A)) and its analogs are potent histone deacetylase (HDAC) but weak PI3K/mTOR inhibitors. These compounds demonstrated broad anti-cancer activities against 38 cancer cell lines with leukemia, lymphoma, and the majority of liver cancer cell lines exhibiting the most sensitivity towards these compounds Compound (A) demonstrated modulation of HDAC targets in vitro in a dose-dependent manner. It has good in vitro ADME profile that translated into a greatly improved pharmacokinetic profile., the compound (A) also demonstrated modulation of HDACs in tumors in a PC-3 xenograft model. It was further evaluated in combination therapies in vitro. It exhibited additive or synergistic growth inhibition effect in HepG2 cells when combined with a number of approved drugs such as sorafenib, sunitinib, and erlotinib. Hence, compound (A) has the potential to be combined with the above to treat advanced liver cancer. As such, current data warrant further evaluation, optimization, and subsequent in vivo validation of the potential combination therapies.
Compound(5451-40-1)Formula: C5H2Cl2N4 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(2,6-Dichloropurine), if you are interested, you can check out my other related articles.
Reference:
Oxazolidine – Wikipedia,
Oxazolidine | C3H7NO – PubChem