Some tips on 99395-88-7

99395-88-7 (S)-4-Phenyloxazolidin-2-one 730424, aoxazolidine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.99395-88-7,(S)-4-Phenyloxazolidin-2-one,as a common compound, the synthetic route is as follows.

The compound was synthesized as trifluoroacetate salt starting from (S)-4-phenyloxazolidin-2-one (1 equiv., 0.163 g, 1 mmol), 4-iodobenzene-1,2-diamine (1 equiv., 0.234 g, 1 mmol), copper(I) iodide (0.1 equiv., 0.019 g, 0.1 mmol), cesium fluoride (2 equiv., 0.304 g, 2 mmol), cyclohexane-1,2-diamine (0.1 equiv., 0.012 mL, 0.1 mmol). The solids were given together in a reaction flask and the flask was purged with argon. A solution of cyclohexane-1,2-diamine in 4 mL dioxane was added to the flask. The reaction was stirred at 95 C. for 20 hours, before the reaction was cooled down to 45 C. and filtered through a pad of celite. The pad was washed with warm dichloromethane and the solution was concentrated under reduced pressure. The intermediate product was purified via FPLC using a chloroform-methanol gradient (0?10%, product elutes at about 5%). Yield: 0.215 g (80%); MS m/z 270.3 (M+H)+ The (S)-3-(3,4-diaminophenyl)-4-phenyloxazolidin-2-one was dissolved in 12 mL of triethyl orthoacetate and the reaction was stirred at 150 C. for 0.5 h before the reaction was cooled down. The excess of triethyl orthoacetate was removed under reduced pressure. The final product was purified by means of FPLC using chloroform-methanol gradient (0?10%), followed by preparative HPLC using a water-acetonitrile gradient with 0.04% trifluoroacetic acid.Yield: 0.095 g (23.3%); MS m/z 294.2 (M+H)+; 1H NMR (400 MHz, DMSO-D6): delta 2.67 (s, 3H); 4.16-4.20 (m, H); 4.85-4.89 (m, H); 5.79-5.83 (m, H); 7.24-7.40 (m, 5H); 7.49 (dd, H, 3J=9.1 Hz, 4J=2.1 Hz); 7.63 (d, H, 3J=9.1 Hz); 7.76 (d, H, 4J=2.1 Hz), HPLC (lambda=214 nm), [B]: rt 8.69 min (100%)., 99395-88-7

99395-88-7 (S)-4-Phenyloxazolidin-2-one 730424, aoxazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; PROBIODRUG AG; US2011/92501; (2011); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Simple exploration of 99395-88-7

99395-88-7 (S)-4-Phenyloxazolidin-2-one 730424, aoxazolidine compound, is more and more widely used in various fields.

99395-88-7, (S)-4-Phenyloxazolidin-2-one is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a precooled (0 C) solution of (S)-3-(4-chlorophenyl)-3-(6-methoxypyidin-3- yl)propanoic acid (3.30 g, 1 1.3 mmol) in THF (30.0 mL) was added pivolyl chloride (1.39 mL, 1 1.3 mmol), DMAP (cat) and triethylamine (3.15 mL, 22.6 mmol) drop-wise and stirred for 1 h. In another precooled (-78 C) suspension of (S)-4-phenyloxazolidin-2-one (2.03 g, 12.4 mmol) in THF (10.0 mL) was added ra-BuLi (2.50 M solution in hexanes, 9.30 mL, 14.9 mmol) drop- wise and stirred at -20 C for 1 h. The solution of the above mixed anhydride was added slowly and stirred for additional 3 h. The reaction mixture was quenched with saturated solution of NH4CI (250 mL) and extracted with EtOAc (2 x 200 mL). The combined EtOAc extracts were washed with brine (200 mL), dried (Na2S04), filtered and concentrated under reduced pressure. The residue was purified on 40 g S1O2 column using using a gradient elution of 0-40% EtOAc in hexanes. Fractions containing the product were combined and concentrated under reduced pressure to provide the product (3.20 g, 65%) as white solid. MS: m/z = 437 (M+H+)., 99395-88-7

99395-88-7 (S)-4-Phenyloxazolidin-2-one 730424, aoxazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; MERCK SHARP & DOHME CORP.; MSD R&D (CHINA) CO., LTD; WILLIAMS, Peter D.; MCCAULEY, John A.; BENNETT, David Jonathan; BUNGARD, Christopher J.; CHANG, Lehua; CHU, Xin-Jie; DWYER, Michael P.; HOLLOWAY, M. Katharine; KEERTIKAR, Kartik M.; LOUGHRAN, H. Marie; MANIKOWSKI, Jesse J.; MORRIELLO, Gregori J.; SHEN, Dong-Ming; SHERER, Edward C.; SCHULZ, Jurgen; WADDELL, Sherman Tim; WISCOUNT, Catherine M.; ZORN, Nicolas; TUMMANAPALLI, Satyanarayana; SIVALENKA, Vijayasaradhi; HU, Bin; JI, Tao; ZHONG, Bin; WO2015/13835; (2015); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

New learning discoveries about 99395-88-7

As the paragraph descriping shows that 99395-88-7 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.99395-88-7,(S)-4-Phenyloxazolidin-2-one,as a common compound, the synthetic route is as follows.

To a solution of (4S)-phenyl-2-oxazolidinone (400 mg, 2.45 mmol) in DMF (5 mL) at 0 C. was added NaH (60% in mineral oil, 117 mg, 2.94 mmol), and the reaction mixture was stirred for 5 min. Benzyl-2-bromoacetate (737 muL, 4.65 mmol) was added and the reaction mixture was stirred at 23 C. for 17 h. The reaction mixture was partitioned between 1.0 N HCl (100 mL) and ethyl acetate (200 mL). The organic layer was washed with saturated aqueous NaHCO3 (100 mL), brine (100 mL), dried over Na2SO4, and concentrated in vacuo to yield a brown oil that was purified by silica gel column chromatography (0-50% EtOAc in hexanes) to yield (2-oxo-[4S]-phenyloxazolidin-3-yl) acetic acid benzyl ester (635 mg, 83%)., 99395-88-7

As the paragraph descriping shows that 99395-88-7 is playing an increasingly important role.

Reference£º
Patent; VICURON PHARMACEUTICALS INC.; US2006/211603; (2006); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Analyzing the synthesis route of 99395-88-7

The synthetic route of 99395-88-7 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.99395-88-7,(S)-4-Phenyloxazolidin-2-one,as a common compound, the synthetic route is as follows.

In anhydrous and oxygen-free environment, 36g of 4-[2-(4-fluoro-phenyl)-[1,3]dithiacyclolan-2-yl]-butyric acid (IV) was added and 300ml of dichloromethane was added. Add 50ml triethylamine,A mixture of 20 ml of pivaloyl chloride and 50 ml of tetrahydrofuran was added dropwise at a temperature of -20C to -10C and reacted for 2 hours. Add 6.4g of anhydrous lithium chloride and stir for 2 hours.27g 4-phenyl-2-oxazolidone was added and the reaction mixture was stirred for 5-7 h, extracted,Crystalline Intermediate VI, yield 96.1%., 99395-88-7

The synthetic route of 99395-88-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Shandong New Age Pharmaceutical Co., Ltd.; Zhang Guimin; Zang Chao; Xia Mingjun; (15 pag.)CN107488138; (2017); A;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Simple exploration of 99395-88-7

99395-88-7 (S)-4-Phenyloxazolidin-2-one 730424, aoxazolidine compound, is more and more widely used in various fields.

99395-88-7, (S)-4-Phenyloxazolidin-2-one is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

In a 500 ml three-necked flask, 20 g (0.122 mol, leq.) Of the (s) -4-phenyl-2-oxazolone raw material and tolueneWas cooled to between 0 and 10 C, and 22 g (0.146 piomicron1, 1.2 eq.) Of t-butyldimethylchlorosilane was added and maintained at 0 toL0 C for 30 minutes under stirring, diisopropylethylamine 19.6g (0.152mall, 1.25eq.), Dropping the process to control the material temperatureAfter 0-10 C, the mixture was stirred at 0-10 C for 2 hours until the (S) -4-phenyl-2-oxazolone was subjected to TLCThe reaction was completed (TLC conditions: petroleum ether / ethyl acetate = 2/1). Then 36.7 g monoethyl malonate chloride was added(0.244piomicron1,2 eq.), Dropping process control the material temperature between 0 ~ 10 C, after the completion of the drop by adding 0.32g anhydrous fourButyl ammonium fluoride (TBAF, 1.2 O1, O. Oleq.) Was added and the reaction was stirred at room temperature for 2-5 hours. After completion of the reaction, the reaction solution was addedPoured into 200 ml of ice water and stirred at room temperature for 30 minutes. The organic phase was separated and the organic phase was washed with 10% sodium carbonate solution,The organic phase was evaporated to dryness to give a crude product. To the crude product isopropyl alcohol l0ml, stirring at 10 ~ 15 C 2 small, And dried to obtain 31.4 g of a product compound in a yield of 93%., 99395-88-7

99395-88-7 (S)-4-Phenyloxazolidin-2-one 730424, aoxazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; Zhangjiagang Hengsheng Pharmaceutical Co Ltd; Ding, Zunliang; Wang, Xilin; Wu, Haufeng; Zhang, Qingyun; (15 pag.)CN105524010; (2016); A;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Brief introduction of 99395-88-7

The synthetic route of 99395-88-7 has been constantly updated, and we look forward to future research findings.

99395-88-7, (S)-4-Phenyloxazolidin-2-one is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Compound I (21 g, 0.1 mol) was added to a 500 ml three-necked flask, Triethylamine 20 ml and dichloromethane 250 ml, Stuttgart dropwise pivaloyl chloride (14.4g, 0.12mol), (4S) -4-phenyl-2-oxazolidinone (24.5 g, 0.15 mol), DMF 5 ml, 4,4-dimethylaminopyridine (1.22 g, 0.01 mol) was added after refluxing for 3 h, After refluxing for 10 h, Ice bath cooling, Then, 200 ml of 5 M hydrochloric acid was added dropwise at 0 C, Static stratification, The lower methylene chloride layer was washed successively with saturated sodium bicarbonate solution and water, Dried over anhydrous sodium sulfate. The filtrate was concentrated to dryness, To give 24.9 g of a white solid compound II, Yield 70%., 99395-88-7

The synthetic route of 99395-88-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Suzhou Puluoda Biological Science and Technology Co., Ltd.; Luo, Ruixue; (14 pag.)CN106397292; (2017); A;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Simple exploration of 99395-88-7

99395-88-7 (S)-4-Phenyloxazolidin-2-one 730424, aoxazolidine compound, is more and more widely used in various fields.

99395-88-7, (S)-4-Phenyloxazolidin-2-one is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5-(4-Fluorophenyl)-5-oxopentanoic acid (21.02 g, 100.0 mmol) and 4 dimethylamino- pyridine (16.25 g, 133.0 mmol) were dissolved in N,N-dimethylformamide (100 mL, 1.0 M) to afford a copious white precipitate suspended in solution. The reaction was cooled to 2 0C (ice/water bath), and trimethylacetyl chloride (16.40 mL, 16.04 g, 133.0 mmol) was added drop-wise to afford a pale yellow mixture. The rate of addition was controlled in order to keep the temperature at or below 5 0C. A heavy white precipitate was formed and the mixture was allowed to warm to room temperature and stirred for 1.5 h. The mixture was charged with (6)-(+)-4-phenyl-2- oxazolidinone (16.32 g, 100.0 mmol) and 4-dimethylaminopyridine (12.22 g, 100.0 mmol) both as solids to afford a yellow colored suspension. The reaction was stirred at 30 C – 35 0C for 2 h. An aliquot was removed for analysis by TLC and HPLC. The pale olive colored suspension was poured into water (400 mL) while stirring vigorously and cooling the mixture in an ice-brine bath, transferred with water (150 mL) and stirred with ice-cooling for 1.5 h to afford a solution with an off-white precipitate. The compound was filtered, transferred with water (2 x 25 mL), washed with water (50 mL) and air dried for 15 min to afford an off-white moist clumpy powder. The material was crystallized from isopropanol (58.0 mL; 1.6 mL/g theoretical yield) by heating to near reflux to afford a golden yellow colored solution. The solution was cooled slowly to room temperature over 12 h, a seed crystal was added and crystals began to precipitate. The mixture was cooled in an ice/water bath and stirred for 1 h. The crystals were filtered, transferred with cold isopropanol (2 x 10 mL), washed with cold isopropanol (25 mL), air dried and vacuum dried to constant weight to afford (45)-4-phenyl-3-[5-(4-fluorophenyl)-5-oxopentanoyl]-l,3- oxazolidin-2-one (30.46 g, 85.7 % yield) as a white crystalline solid; m.p. 91.0 0C; EPO R/ 0.40 (1:2 ethyl acetate-hexane); HPLC Rr7.02 min; HPLC purity 94 %. 1H NMR (300 MHz, CDCl3) delta 7.93 (dd, J= 5.4, 9.0 Hz, 2H), 7.28-7.42 (m, 5H), 7.10 (dd, J= 8.5, 9.0 Hz, 2H), 5.43 (dd, J= 3.7, 8.7 Hz, IH), 4.70 (t, J= 8.9 Hz, IH), 4.28 (dd, J= 3.7, 8.7 Hz, IH), 3.05 (dt, J= 1.2, 7.3 Hz, 2H), 2.97 (t, J= 7.3, 2H), 2.05 (p, J= 7.3 Hz, 2H), ppm., 99395-88-7

99395-88-7 (S)-4-Phenyloxazolidin-2-one 730424, aoxazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; MICROBIA, INC.; WO2006/122216; (2006); A2;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Downstream synthetic route of 99395-88-7

As the paragraph descriping shows that 99395-88-7 is playing an increasingly important role.

99395-88-7, (S)-4-Phenyloxazolidin-2-one is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Example 21 (S,E)-3-(pent-2-enoyl)-4-phenyl oxazolidin-2-one The 4S-phenyl-2-oxazolidinone (5.6g, 34.4mmol) was placed in a three-necked flask, after it was purged with nitrogen, tetrahydrofuran was added and it was cooled to -78C, then n-butyl lithium (1.6M, 22ml, 35.4mmol) was added dropwise, and the reaction was carried out for 30 minutes. After that, a solution of 2-pentenoyl chloride (4.2g, 35.5mmol) in tetrahydrofuran was added dropwise, and the reaction was continued for 30 minutes, then it was slowly raised to 0C, the reaction was continued for 2 hours and quenched with saturated ammonium chloride solution. The reaction solution was then concentrated to remove tetrahydrofuran and extracted with ethyl acetate 3 times, then the organic phases were combined, washed with saturated brine, dried over anhydrous sodium sulfate, concentrated, and recrystallized with petroleum ether and ethyl acetate to give a white solid 8g, yield: 95%. 1HNMR(300MHz, CDCl3): delta 7.3-7.4(5H, m), 7.1-7.2(1H, m), 6.9-7.1(1H, m), 5.5(1H, dd, J=4.2,19.0), 4.8(1H, t, J=9.6, 18.7), 4.2(1H, dd, J=3.7,18.9), 2.2(2H, m), 1.0(3H, t, J=7.4,14.9). ESI-MS: 246.4(M+H)., 99395-88-7

As the paragraph descriping shows that 99395-88-7 is playing an increasingly important role.

Reference£º
Patent; Shanghai Institute Materia Medica, Chinese Academy Of Sciences; Topharman Shanghai Co., Ltd.; ZHANG, Qiang; ZHANG, Rongxia; TIAN, Guanghui; LI, Jianfeng; ZHU, Fuqiang; JIANG, Xiangrui; SHEN, Jingshan; EP2671878; (2013); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Analyzing the synthesis route of 99395-88-7

The synthetic route of 99395-88-7 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.99395-88-7,(S)-4-Phenyloxazolidin-2-one,as a common compound, the synthetic route is as follows.

Example 21 (S,E)-3-(pent-2-enoyl)-4-phenyl oxazolidin-2-one The 4S-phenyl-2-oxazolidinone (5.6 g, 34.4 mmol) was placed in a three-necked flask, after it was purged with nitrogen, tetrahydrofuran was added and it was cooled to -78 C., then n-butyl lithium (1.6M, 22 ml, 35.4 mmol) was added dropwise, and the reaction was carried out for 30 minutes. After that, a solution of 2-pentenoyl chloride (4.2 g, 35.5 mmol) in tetrahydrofuran was added dropwise, and the reaction was continued for 30 minutes, then it was slowly raised to 0 C., the reaction was continued for 2 hours and quenched with saturated ammonium chloride solution. The reaction solution was then concentrated to remove tetrahydrofuran and extracted with ethyl acetate 3 times, then the organic phases were combined, washed with saturated brine, dried over anhydrous sodium sulfate, concentrated, and recrystallized with petroleum ether and ethyl acetate to give a white solid 8 g, yield: 95%. 1HNMR (300 MHz, CDCl3): delta 7.3-7.4 (5H, m), 7.1-7.2 (1H, m), 6.9-7.1 (1H, m), 5.5 (1H, dd, J=4.2, 19.0), 4.8 (1H, t, J=9.6, 18.7), 4.2 (1H, dd, J=3.7, 18.9), 2.2 (2H, m), 1.0 (3H, t, J=7.4, 14.9). ESI-MS: 246.4 (M+H)., 99395-88-7

The synthetic route of 99395-88-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Zhang, Qiang; Zhang, Rongxia; Tian, Guanghui; Li, Jianfeng; Zhu, Fuqiang; Jiang, Xiangrui; Shen, Jingshan; US2014/46074; (2014); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Downstream synthetic route of 99395-88-7

As the paragraph descriping shows that 99395-88-7 is playing an increasingly important role.

99395-88-7, (S)-4-Phenyloxazolidin-2-one is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Step 1 : To a 1 liter flask were added 39.21 grams (0.116 mol) compound L-1 (Z configuration), 300 ml of tetrahydrofuran and 19.0 ml (0.14ml) of isobutyl chloroformate. Then, 19.3 ml (0.14mmol) of triethylamine was added dropwise therein at a temperature of about -60C. After the addition, the mixture was warmed up to room temperature and the reaction lasted 30 minutes. The residue was filtered to obtain the mixed anhydride in tetrahydrofuran solution for further use. Step 2: To a 3 liter flask were added 22.69 grams (0.14ml) (S)-4-phenyl-2-oxazolidone and 0.6 liter of tetrahydrofuran . Then, 69.6 ml (2mol/L) of sodium bis(trimethylsilyl)amide was added dropwise therein at about -25C. The reaction lasted 30 minutes. Then, the tetrahydrofuran solution of mixed anhydride obtained from step 1 was added dropwise therein. After the addition, the mixture was warmed up to room temperature and the reaction lasted 1 hour. The residue was extracted 3 times with ethyl acetate (150 mlx3). The organic phases were combined, washed 3 times with brine, dried over anhydrous sodium sulfate and concentrated till dry to obtain 47.62 grams (0.10 mol) of compound III-1 (Z configuration), with the yield of 85%. 1H NMR (400 MHz, CDCl3) : delta 0.05 (s, 6 H, 2¡Á-CH3), 0.86 (s, 9 H, 3¡Á-CH3), 2.59-2.64 (m, 2 H, -CH2-), 3.13-3.18 (m, 2 H, -CH2-), 4.32-4.35 (m, 1 H, -CH2-), 4.52 (s, 2 H, -CH2-), 4.74 (t, 1 H, J = 8.8 Hz, -CH2-), 5.47-5.49 (m, 1 H, -CH-), 5.74 (t, 1 H, J = 7.5 Hz, -CH-), 6.99-7.03 (m, 2 H, Cpr-H), 7.31-7.41 (m, 7 H, Cpr-H); MS (m/z): 506 [M+Na]., 99395-88-7

As the paragraph descriping shows that 99395-88-7 is playing an increasingly important role.

Reference£º
Patent; Zhejiang Hisun Pharmaceutical Co. Ltd.; EP2465847; (2012); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem