Application In Synthesis of Ethyl 3-bromo-2-oxopropanoate. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: Ethyl 3-bromo-2-oxopropanoate, is researched, Molecular C5H7BrO3, CAS is 70-23-5, about Design, synthesis, in vitro evaluation and molecular docking study of N’-arylidene imidazo[1,2-a]pyridine -2-carbohydrazide derivatives as novel tyrosinase inhibitors.
A novel series of imidazo[1,2-a]pyridine 2-carbohydrazide derivatives bearing different arylidene pendants I [R = 4-OH, 2-MeO, 3-OH-4-MeO, etc.] were designed, synthesized and evaluated for their inhibitory activity against mushroom tyrosinase. It was found that compounds I [R = 3-NO2, 4-OH] exhibited the best tyrosinase inhibitory activity with IC50 values of 7.19 and 8.11μM, resp. These results were comparable to that of kojic acid as the reference drug (IC50 = 9.64±0.5μM). Addnl., mol. docking anal. was performed to study the interactions and binding modes of compounds I [R = 3-NO2, 4-OH, 2,4-di-OH] which showed the potential of two critical pi-pi interactions with His263 and Phe264 in the active site of tyrosinase. The results indicated that compounds I [R = 3-NO2, 4-OH] could be introduced as potent tyrosinase inhibitors that might serve as promising candidates in medicine, cosmetics or food industry.
If you want to learn more about this compound(Ethyl 3-bromo-2-oxopropanoate)Application In Synthesis of Ethyl 3-bromo-2-oxopropanoate, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(70-23-5).
Reference:
Oxazolidine – Wikipedia,
Oxazolidine | C3H7NO – PubChem