New learning discoveries about 2346-26-1

Any one of these steps may be slow and thus may serve as the rate determining step. In general, however, in the presence of the catalyst, the overall rate of the reaction is faster than it would be if the reactants were in the gas or liquid phase.

We know that the rate of many reactions can be accelerated by catalysts. A catalyst speeds up the rate of a reaction by lowering the activation energy; in addition, the catalyst is regenerated in the process. 2346-26-1, name is Oxazolidine-2,4-dione,below Introduce a new synthetic route., 2346-26-1

Step 2 3-(2-((3R,4aR,6aS,7R,10bR)-3-(3,4-difluorophenyl)-6a,10b-dimethyl-8-methylenedecahydro-1H-naphtho[2,1-d][1,3]dioxin-7-yl)ethyl)oxazolidine-2,4-dione (4aR,6aS,7R,10bR)-7-(2-bromoethyl)-3-(3,4-difluorophenyl)-6a,10b-dimethyl-8-methylenedecahydro-1H-naphtho[2,1-d][1,3]dioxin (150 mg, 0.33 mmol) and potassium carbonate (91 mg, 0.66 mmol) were dissolved in N,N-dimethylformamide (2 mL), added with oxazolidine-2,4-dione (67 mg, 0.66 mmol) and stirred at 80 C. for 1.5 hours. The reaction solution was quenched with water and extracted with dichloromethane (50 mL*3). The organic layer was washed with saturated brine and water, dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure and separated on a thin layer chromatography plate to give 3-(2-((3R,4aR,6aS,7R,10bR)-3-(3,4-difluorophenyl)-6a,10b-dimethyl-8-methylenedecahydro-1H-naphtho[2,1-d][1,3]dioxin-7-yl)ethyl)oxazolidine-2,4-dione 215 (70 mg, yield: 44.7%). 1H NMR (400 MHz, CDCl3) 7.36-7.31 (m, 1H), 7.19-7.12 (m, 2H), 5.70 (s, 1H), 4.96 (s, 1H), 4.78 (s, 1H), 4.68 (s, 1H), 4.22 (d, J=11.6 Hz, 1H), 3.68-3.45 (m, 4H), 2.48-1.78 (m, 6H), 1.69 (s, 3H), 1.28-1.25 (m, 3H), 0.79 (s, 3H)., 2346-26-1

Any one of these steps may be slow and thus may serve as the rate determining step. In general, however, in the presence of the catalyst, the overall rate of the reaction is faster than it would be if the reactants were in the gas or liquid phase.

Reference£º
Patent; Heilongjiang Zhenbaodao Pharmaceutical Co., Ltd.; MEDSHINE DISCOVERY INC.; HE, Haiying; JIANG, Zhigan; XIA, Jianhua; WANG, Jing; HAN, Lixia; LAN, Lihong; ZHOU, Hui; LAI, Kunmin; CHEN, Shuhui; US2018/346438; (2018); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Downstream synthetic route of 108149-60-6

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 108149-60-6, if you are interested, you can browse my other articles.

#REF!

To an ice cold solution of commercially available 1 (35 g, 135 mmol) in THF/MeOH (500 mL (95:5)), was added LiBH4 (5.9 g, 271 mmol) portionwise and the suspension was stirred for 2 h at RT. The reaction mixture was cooled and quenched with ice. Solvent was removed under reduced pressure, and water was added. The aqueous layer was extracted with EtOAc, concentrated and chromatographed (EtOAc:hexanes, 3:7) to yield 2 (23 g, 74 % yield)., 108149-60-6

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 108149-60-6, if you are interested, you can browse my other articles.

Reference£º
Patent; EXELIXIS, INC.; XU, Wei; (170 pag.)WO2017/4609; (2017); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Brief introduction of 90319-52-1

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 90319-52-1, if you are interested, you can browse my other articles.

An elementary termolecular reaction involves the simultaneous collision of three atoms, molecules, or ions.(R)-4-Phenyloxazolidin-2-one, cas is 90319-52-1. Here is a downstream synthesis route of the compound 90319-52-1. 90319-52-1

General procedure: Procedure 1: To a solution of alkyne (9.80 mmol, 1.0 equiv) in acetone (10 mL) was added NBS (10.78 mmol, 1.1 equiv) and AgNO3 (0.98 mmol, 0.1 equiv). The resulting solution was stirred under nitrogen at room temperature for 4 h. After removing excess acetone the reaction was quenched with water and extracted with petroleum ether three times, dried over MgSO4, and concentrated under reduced pressure. The residue was eluted through a short silica column (petroleum ether) to obtain the bromoalkyne. To a dried flask was added 2-oxazolidone (4.8 mmol, 1.2 equiv), CuSO4¡¤5H2O (100 mg, 0.4 mmol, 0.1 equiv), 1,10-phenanthroline (144 mg, 0.8 mmol, 0.2 equiv) and K2CO3 (1.38 g, 10.0 mmol, 2.5 equiv), bromoalkyne (4.0 mmol, 1.0 equiv) and this mixture was subsequently treated with anhydrous toluene (10 mL). The flask was charged with nitrogen, and the solution was heated at 80 ¡ãC overnight. After completion, the crude reaction mixture was cooled to room temperature, filtered and concentrated in vacuo. Purification of the crude residue using silica gel flash column chromatography yielded the pure ynamides., 90319-52-1

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 90319-52-1, if you are interested, you can browse my other articles.

Reference£º
Article; Wang, Wan-Shu; Chen, Ping; Tang, Yu; Tetrahedron; vol. 73; 19; (2017); p. 2731 – 2739;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Brief introduction of 2346-26-1

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps. you can also browse my other articles about2346-26-1

2346-26-1, The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 2346-26-1, name is Oxazolidine-2,4-dione. A new synthetic method of this compound is introduced below.

5.2. 3-{[1-(1-Isoquinolyl)-4-piperidyl]methyl}-1,3-oxazolidine-2,4-dione A solution of 2.01 g (9.95 mmol) of diisopropyl azodicarboxylate (DIAD) in 5 ml of tetrahydrofuran is added dropwise, under an inert atmosphere, to a solution of 2.4 g (9.95 mmol) of [1-(1-isoquinolyl)-4-piperidyl]methanol, prepared in step 5.1, 2.87 g (10.94 mmol) of triphenylphosphine and 1.21 g (11.93 mmol) of 1,3-oxazolidine-2,4-dione in 40 ml of tetrahydrofuran, cooled to about -10 C., the temperature of the reaction medium being maintained throughout between -10 C. and 0 C. Stirring is then continued at 0 C. for 1 hour and then at 25 C. for 18 hours. The mixture is concentrated under reduced pressure and the residue is taken up in dichloromethane and 10 ml of aqueous 5% sodium hydroxide solution. The aqueous phase is separated out and then extracted twice with dichloromethane. The organic phases are combined and washed successively with aqueous hydrochloric acid solution (1N) and then with saturated aqueous sodium hydrogen carbonate solution and with saturated aqueous sodium chloride solution. The organic phase is dried over sodium sulfate and the filtrate is concentrated under reduced pressure. The residue thus obtained is purified by chromatography on silica gel, eluding with a 99/1/0.1 and then 98/2/0.2 mixture of dichloromethane, methanol and 28% aqueous ammonia. 3.57 g of oxazolidinedione are thus obtained in the form of an orange paste., 2346-26-1

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps. you can also browse my other articles about2346-26-1

Reference£º
Patent; Sanofi-Aventis; US2006/89344; (2006); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

New learning discoveries about 7517-99-9

In every case, we must determine the overall rate law from experimental data and deduce the mechanism from the rate law (and sometimes from other data). you can also browse my other articles about 7517-99-9 if you are interested.

7517-99-9, The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 7517-99-9, name is 5-(Hydroxymethyl)oxazolidin-2-one. A new synthetic method of this compound is introduced below.

7517-99-9, General procedure: A Schlenk tube was charged with aryl bromide(1 mmol), oxazolidone(1.2 mmol), N,N-dimethylglycine(10.3mg, 0.1 mmol), recrystallized CuI(9.5mg, 0.05 mmol) and K2CO3(276mg, 2 mmol). The tube was evacuated and backfilled with argon(3 times) before dry DMF(0.5 ml) was added. The reaction mixture was stirred at 120 C until the corresponding aryl bromidewas completely consumed as monitored by TLC. The reaction mixture was extracted with ethyl acetate. The organic layer was washed with H2O and brine, and dried by Na2SO4. Removal of solvent in vacuo and purified by column chromatography on silica gel to provide the desired product.

In every case, we must determine the overall rate law from experimental data and deduce the mechanism from the rate law (and sometimes from other data). you can also browse my other articles about 7517-99-9 if you are interested.

Reference£º
Article; Li, Jiaojiao; Zhang, Yihua; Jiang, Yongwen; Ma, Dawei; Tetrahedron Letters; vol. 53; 31; (2012); p. 3981 – 3983;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Some tips on 95530-58-8

Thank you very much for taking the time to read this article. If you are also interested in other aspects of 95530-58-8, you can also browse my other articles.

A heterogeneous catalyst is a catalyst that is present in a different phase than the reactants. Such catalysts generally function by furnishing an active surface upon which a reaction can occur. 95530-58-8, name is (R)-4-Isopropyloxazolidin-2-one, introduce a new downstream synthesis route as follows., 95530-58-8

95530-58-8, General procedure: n-BuLi (2.89M, 7.12mL, 20.6mmol) was added dropwise over 15min to a cold (-78C), stirred solution of (R)-4-isopropyloxazolidin-2-one 3 (2.5g, 19.6mmol) in dry THF (80mL), and the mixture was stirred at -78C for 30min. Octanoyl chloride (3.67mL, 21.5mmol) was then added dropwise, and the resulting mixture was stirred at -78C for 20min, then warmed to -10C for 2h. The mixture was quenched with 1M aqueous K2CO3 (100mL) and warmed to room temperature. The crude products were extracted with hexanes (2¡Á100mL), and the combined hexane extracts were washed with water and brine, dried, and concentrated. The residue was purified by flash chromatography on silica gel (50g). Elution with hexane/EtOAc (9:1) afforded 4.93g (19.3mmol, 98%) of (R)- 4 as a colorless oil, numax (neat): 2958 (m), 2927 (s), 2854 (m), 1777 (s), 1699 (s), 1487 (w), 1465 (m), 1384 (s), 1301 (m), 1269 (w), 1232 (m), 1204 (s), 1120 (w), 1091 (w), 1059 (m), 1020 (m), 971 (w), 773 (m), 723 (w), 708 (w); ?H (CDCl3): 0.78 (3H, m), 0.82 (6H, d, J=6.2Hz), 1.18 (6H, m), 1.55 (2H, m), 2.28 (1H, m), 2.74 (1H, pseudoquintet, J=6.2Hz), 2.89 (1H, pseudoquintet, J=6.4Hz), 4.11 (1H, dd, J=16, 4Hz), 4.18 (1H, pseudotriplet, J=8.4Hz), 4.34 (1H, m); ?C (CDCl3): 14.0, 14.9, 18.0, 23.0, 24.9, 28.2, 29.3, 31.9, 35.8, 58.5, 63.5, 154, 173.8; GC-MS [column: DB-5MS, 5% phenylmethylsiloxane, 30m¡Á0.25mm id; carrier gas, He; temp: 50-280C (10C/min)]: tR: 19.43min (100%); MS of 4 (70eV, EI); m/z: 255 (1, M+), 212 (2), 184 (5), 171 (8), 142 (1), 127 (17), 109 (3), 85 (9), 71 (8), 57 (42), 41 (47).

Thank you very much for taking the time to read this article. If you are also interested in other aspects of 95530-58-8, you can also browse my other articles.

Reference£º
Article; Bello, Jan E.; Millar, Jocelyn G.; Tetrahedron Asymmetry; vol. 24; 13-14; (2013); p. 822 – 826;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Some tips on 131685-53-5

Any one of these steps may be slow and thus may serve as the rate determining step. In general, however, in the presence of the catalyst, the overall rate of the reaction is faster than it would be if the reactants were in the gas or liquid phase.

We know that the rate of many reactions can be accelerated by catalysts. A catalyst speeds up the rate of a reaction by lowering the activation energy; in addition, the catalyst is regenerated in the process. 131685-53-5, name is (R)-(-)-4-Benzyl-3-propionyl-2-oxazolidinone,below Introduce a new synthetic route., 131685-53-5

Example 15; Step 15A: Compound 15a; (S) -4-Benzyl-3-propionyl-oxazolidin-2-one (46.7 g, 200.0 mmol) was dissolved in THF (870 mL) under inert atmosphere (N2). This was then cooled to-70 C (dry ice/acetone) and treated with sodium hexamethyldisilazide-HMDS (110 mL of a 2. 0M solution in THF, 220.0 mmol) in a dropwise fashion (addition lasted for-45 min. ). The resulting mixture was stirred at-70 C for 1 h. A solution of 4-chlorobenzyl bromide (53.4 g, 260.0 mmol) in THF (160 mL) was then added dropwise over 30 min. The resulting mixture was stirred at-70 C for 6 h and then allowed to warm to room temperature overnight. The reaction was carefully quenched with H20 (100 mL) and the solvent was removed in vacuo. The resulting slurry was suspended in H20 (200 mL) and filtered. The solid was rinsed with EtOAc and air-dried to give 36. 67 g (102.6 mmol, 51%) of 15a. A second crop was obtained from the filtrates after the organic layer was separated, washed with brine, dried (MgS04) and evaporated. The resulting brown solid was suspended in MeOH and filtered to give 17.22 g (48.2 mmol, 24%) of 15a. Only one diastereomer was observed by IH NMR and by single crystal X-ray analysis. IH NMR (Cl3-300 MHz) b 1.18 (d, J = 6.3 Hz, 3H, ) ; 2.66-2. 56 (m, 2 H); 3.16-3. 07 (m, 2H); 4.22-4. 02 (m, 3H); 4. 71- 4.63 (m, 1H) ; 7.08-7. 05 (m, 2H); 7.32-7. 21 (m, 7H)., 131685-53-5

Any one of these steps may be slow and thus may serve as the rate determining step. In general, however, in the presence of the catalyst, the overall rate of the reaction is faster than it would be if the reactants were in the gas or liquid phase.

Reference£º
Patent; NEUROCRINE BIOSCIENCES, INC.; WO2005/42516; (2005); A2;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Downstream synthetic route of 452339-73-0

Any one of these steps may be slow and thus may serve as the rate determining step. In general, however, in the presence of the catalyst, the overall rate of the reaction is faster than it would be if the reactants were in the gas or liquid phase.

452339-73-0, The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 452339-73-0, name is (R)-5-(2,2-Dimethyl-4H-benzo[d][1,3]dioxin-6-yl)oxazolidin-2-one. A new synthetic method of this compound is introduced below.

Sodium hydride (60% oil dispersion, 1.4g) was added to a stirred solution of (5R)- (2, 2- DIMETHYL-4H-1, 3-BENZODIOXIN-6YL)-1, 3OXAZOLIDIN-2-ONE (6. 0G) in dry dimethylformamide (80ML) at 0 under nitrogen. After 20 min a solution of 1- {4- [ (6-BROMOHEXYL) oxy] butyl}-4- iodobenzene (12.6g) in dry dimethylformamide (30ML) was added dropwise. The mixture was stirred for 15h at ambient temperature. The mixture was poured into an aqueous ammonium chloride solution (700MI) and extracted into ethyl acetate. The organic extracts were washed with water, dried (NA2SO4) and evaporated. Purification by chromatography on a biotage cartridge (90g) using ether-petroleum ether (40-60) (4: 1) gave the title compound as a clear oil (10G). LCMS RT = 4.19 min.

Any one of these steps may be slow and thus may serve as the rate determining step. In general, however, in the presence of the catalyst, the overall rate of the reaction is faster than it would be if the reactants were in the gas or liquid phase.

Reference£º
Patent; GLAXO GROUP LIMITED; WO2004/39762; (2004); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Brief introduction of 80-65-9

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 80-65-9, if you are interested, you can browse my other articles.

80-65-9, We know that the rate of many reactions can be accelerated by catalysts. A catalyst speeds up the rate of a reaction by lowering the activation energy; in addition, the catalyst is regenerated in the process. 80-65-9, name is 3-Aminooxazolidin-2-one,below Introduce a new synthetic route.

General procedure: Following the addition of 4-(4-fluorophenoxy) butyric acid (0.71 g, 3.6 mmol) to 20 mL ofdichloromethane in a 50 mL three-necked round-bottom flask, thesolution was agitated until dissolution. Subsequently, EDCI (0.85 g,4.44 mmol) HOBt (0.6 g, 4.44 mmol) and triethylamine (0.84 g,9.25 mmol) were added in turn at 0 C. Stirring in an ice bath for 1 h,3-amino-2-oxazolidinone (0.37 g, 3.6 mmol) was added again. Thesolutionwas brought to 25 C and stirred overnight. Following TLC,the product was filtered by vacuum and dried under rotary evaporation.The product was a white solid weighing 0.51 g with a yieldof 50.2%.

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 80-65-9, if you are interested, you can browse my other articles.

Reference£º
Article; Jiang, Kai; Yan, Xinlin; Yu, Jiahao; Xiao, Zijian; Wu, Hao; Zhao, Meihua; Yue, Yuandong; Zhou, Xiaoping; Xiao, Junhai; Lin, Feng; European Journal of Medicinal Chemistry; vol. 194; (2020);,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Downstream synthetic route of 99395-88-7

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 99395-88-7, if you are interested, you can browse my other articles.

99395-88-7, Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.(S)-4-Phenyloxazolidin-2-one, cas is 99395-88-7, below Introduce a new synthetic route.

To a solution of (E)-4- (benzyloxy)but-2-enoic acid 236 (2.5g, 13.01mmol) and triethylamine (1.45g, 14.31 mmol) in anhydrous THF (40 mL) under nitrogen at -78 C was added trimethylacetyl chloride (1.72g, 14.3 lmmol). The reaction mixture was stirred at -78 C for 10 minutes, 0 C for 1 hour, then re-cooled to -78C.At the same time, in a seperate flask charged with a solution of (S)-4-phenyloxazolidin-2- one 237 (0.42g, 2.6mmol) in anhydrous THF (40 mL) under nitrogen at -78 C was added dropwise a solution of LiHMDS (14.31 mL, 14.3 lmmol). The mixture was stirred at -78 C for 20 minutes and then transferred via a cannula into the reaction flask containing the mixed anhydride at -78 C. The reaction mixture was stirred at 0 C for 1 hour, then warmed to room temperature and stirred for 18 hours. The crude mixture was quenched with sat. NH4CI (200 mL), and concentrated in vacuo, to about half of its original volume under reduced pressure to remove THF. The remaining mixture was extracted with ethyl acetate (150 mL x 2). The organic layer was separated, combined, dried over anhydrous Na2SC>4 and concentrated to dryness. The residue was purified by silica gel column (PE : EA = 2 : 1) to give 238, (S,E)-3-(4-(benzyloxy)but-2-enoyl)-4-phenyloxazolidin-2-one (3 g, 68% yield). LC-MS (LC method 1): m/z 338 (M+l)+., 99395-88-7

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 99395-88-7, if you are interested, you can browse my other articles.

Reference£º
Patent; SPERO OPCO; LISTER, Troy; SHARMA, Rajiv; ZABAWA, Thomas; ZAHLER, Robert; (146 pag.)WO2017/189866; (2017); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem