Simple exploration of 875444-08-9

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 875444-08-9, if you are interested, you can browse my other articles.

875444-08-9, We know that the rate of many reactions can be accelerated by catalysts. A catalyst speeds up the rate of a reaction by lowering the activation energy; in addition, the catalyst is regenerated in the process. 875444-08-9, name is (4S,5R)-5-(3,5-Bis(trifluoromethyl)phenyl)-4-methyloxazolidin-2-one,below Introduce a new synthetic route.

875444-08-9, To a solution of (45′,5J?)-5-[3}5-bis(trifluoromethyl)phenyl]-4-methyl-li3-oxazoIidin-2-one (4.94 g, 15.77 mmol) in THF (75 mL) was added NaH (60% dispersion in mineral oil) (0.526 g, 13.14 mmol). After stirring the reaction at room temperature for 10 minutes, 3-bromo-2- (bromomethyl)-6-chloropyridine (3.0 g, 10.51 mmol) was added as a solution in THF (20 mL). The reaction was stirred at room temperature for 16 hours and then quenched with saturated NH4CI (40 mL). The mixture was diluted with EtOAc (100 mL) and hexanes (50 mL). The organic layer was washed with water (2 x 100 mL) and brine (50 mL), dried over Na2S0 , filtered, and concentrated. Purification of the residue by flash chromatography on silica gel with 0 to 50% EtOAc/hexanes afforded (4555^)-5-[3,5-bis(trifiuoromethyl)phenyl]-3-t(3-bromo-6- chloropyridin-2-yl)methyl]-4-methyl-1,3-oxazolidin-2-one. LCMS = 518.8 (M+H)+ 1H MR (CD<, 500 MHz) delta 7.90 (s, 1H), 7.81-7.83 (m, 3H), 7.18 (d, J- 8.5 Hz, 1H), 5.87 (d, J- 8.5 Hz, 1H), 5.02 (d, J= 17.2 Hz, 1H)5 4.42 (m, IE), 4.32 (d, J= 17.1 Hz, 1H), 0.80 (d, J= 6.6 Hz, 3H). Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 875444-08-9, if you are interested, you can browse my other articles. Reference£º
Patent; MERCK SHARP & DOHME CORP.; LU, Zhijian; CHEN, Yi-Heng; SMITH, Cameron; LI, Hong; THOMPSON, Christopher, F.; SWEIS, Ramzi; SINCLAIR, Peter; KALLASHI, Florida; HUNT, Julianne; ADAMSON, Samantha, E.; DONG, Guizhen; ONDEYKA, Debra, L.; QIAN, Xiaoxia; SUN, Wanying; VACHAL, Petr; ZHAO, Kake; WO2012/58187; (2012); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Downstream synthetic route of 99395-88-7

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 99395-88-7, if you are interested, you can browse my other articles.

99395-88-7, Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.(S)-4-Phenyloxazolidin-2-one, cas is 99395-88-7, below Introduce a new synthetic route.

The compounds of formula I 21.2g taken with 110ml of DMF was dissolved and replaced with nitrogen, cooled to -10 ~ 0 C under nitrogen, temperature control, input portionwise 16g of lithium hydride, insulation 0.5h, slowly dropwise methyl chloroformate 30.2g, control temperature -10 ~ 0 C, after the addition was complete insulation 1h, warmed to 20 ~ 25 C, into S-4- phenyl-2-oxazolidinone 15.5g, feeding ended, insulation, the reaction was complete, water and methyl tert-butyl ether extracts, standing layer, the organic layer was washed with saturated brine, evaporated under reduced pressure to give an oil. With a mixture of ethyl acetate and hexane to crystallize with stirring, suction filtered and washed with hexane, dried in vacuo to give a white solid product 38.8g, molar yield 92.9%, HPLC purity 95%. Without further purification, can be used directly in the next step., 99395-88-7

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 99395-88-7, if you are interested, you can browse my other articles.

Reference£º
Patent; Zhejiang Jiuzhou Pharmaceutical Co., Ltd; ZHU, GUOLIANG; LI, YUNGUANG; YANG, LIJUN; SUN, LIGUO; CHEN, XIANGYUAN; (8 pag.)CN105461649; (2016); A;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Brief introduction of 108149-63-9

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps. you can also browse my other articles about108149-63-9

108149-63-9, The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 108149-63-9, name is (R)-tert-Butyl 4-(hydroxymethyl)-2,2-dimethyloxazolidine-3-carboxylate. A new synthetic method of this compound is introduced below.

Serinol derivative 5 (2.8 g, 12.1 mmol) was dissolved in dry DMSO (30 mL) and treated with NaH (582 mg, 60% dispersion in mineral oil, 14.5 mmol) and mesylate 43 (4.8 g, 14.5 mmol) was added sequentially. The reaction immediately changed color from nearly colorless to orange red. The reaction was stirred at room temperature for 16 h, and was then quenched by the ice and diluted with ethyl acetate. The two layers were separated and the aqueous layer extracted with ethyl acetate (5 15 mL). The combined organic layers were dried (Na2SO4) and concentrated in vacuo. Purification by flash column chromatography (85:15 petroleum ether/EtOAc) yielded the serinol ether 42 (4.01 g, 71%) as colorless oil:, 108149-63-9

There are, however, a few established termolecular elementary reactions. The reaction of nitric oxide with oxygen appears to involve termolecular steps. you can also browse my other articles about108149-63-9

Reference£º
Article; Das, Shyamsundar; Induvadana, Boddeti; Ramana; Tetrahedron; vol. 69; 7; (2013); p. 1881 – 1896;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

New learning discoveries about 95715-86-9

In every case, we must determine the overall rate law from experimental data and deduce the mechanism from the rate law (and sometimes from other data). you can also browse my other articles about 95715-86-9 if you are interested.

95715-86-9, The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 95715-86-9, name is Methyl (R)-N-Boc-2,2-dimethyloxazolidine-4-carboxylate. A new synthetic method of this compound is introduced below.

A 3-necked, 1000 mL round-bottom flask fitted with a N2 inlet adapter, magnetic stir bar, drying tube, temperature guage, and a septa was charged with methyl (S)- (-)-3- (TERT-BUTOXYCARBONYL)-2, 2-DIMETHYL-4-OXAZOLIDINE-CARBOXYLATE (15. 42 g, 59.46 mmole) and 120 ML of anhydrous toluene. The solution was cooled TO-78 C in A dry ice/acetone bath. A solution of DIISOBUTYLALUMINUM hydride in toluene (69.5 ML, 104.1 mmole) was cooled TO-78 C in A separate dry ice/acetone bath and added to the ester solution under N2 pressure via a steel cannula over a period of 30 min. The rate of addition was adjusted to prevent the reaction mixture from warming above- 70 C. After addition was complete, the mixture was stirred at-78 C for an additional 30 minutes. Excess hydride was quenched by the dropwise addition of 20 mL of pre-chilled (-78 C) methanol, again keeping the reaction temperature below- 70 C. The resulting white slurry was poured into 500 mL of ice-cold 1 N HC1. The aqueous layer was extracted with ethyl acetate (3 x 300 mL). The combined organic layers were washed with 300 mL 1 N HC1, and brine, dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure to yield (S)-4- formyl-2,2-dimethyl-3-oxazolidinecarboxylic acid tert-butyl ester (14.65 g) as a yellow oil. The residue was dissolved in 200 mL of anhydrous methanol, and the flask was flushed with N2. N-Benzylglycine ethyl ester (23.0 g, 118. 9 mmole) and acetic acid (6. 8 mL, 118. 9 mmole) were added, and the reaction mixture was cooled in an ice bath. A solution of sodium cyanoborohydride in tetrahydrofuran (100 mL, 100 mmole) was added via a cannula under positive N2 pressure. The reaction mixture was stirred at room temperature for 18h. A large excess of solid K2C03 was added until gas evolution ceased. The slurry was concentrated almost to dryness under reduced pressure and the residue was dissolved in 300 mL of dichloromethane. The organic layer was washed with 300 mL of 1: 1: 1 water/saturated NAHC03/BRINE. The aqueous layer was extracted with ethyl acetate (2 x 200 mL). The combined organic layers were dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, gradient: 15% ethyl acetate/hexane to 30% ethyl acetate/hexane) gave 16.83 g (70%) of (S)-4-[(BENZYLETHOXYCARBONYL-METHYLAMINO)- methyl] -2, 2-dimethyl-3-oxazolidinecarboxylic acid tert-butyl ester as a clear viscous oil. MS : 407. 3 (M+1).

In every case, we must determine the overall rate law from experimental data and deduce the mechanism from the rate law (and sometimes from other data). you can also browse my other articles about 95715-86-9 if you are interested.

Reference£º
Patent; WARNER-LAMBERT COMPANY LLC; WO2004/89915; (2004); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Brief introduction of 497-25-6

Any one of these steps may be slow and thus may serve as the rate determining step. In general, however, in the presence of the catalyst, the overall rate of the reaction is faster than it would be if the reactants were in the gas or liquid phase.

The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism., 497-25-6, If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 497-25-6, name is Oxazolidin-2-one. A new synthetic method of this compound is introduced below.

497-25-6, General procedure: General nitration procedure.12-14 A steel autoclave (25 cm3) equippedwith sapphire windows containing urethane 1c or amide 3 or 5 (10.0 mmol)was filled with liquid CO2 to 60 bar pressure and cooled to 0 C. ThenN2O5 (2.4 g, 22.0 mmol) solution in liquid CO2 (~ 4 g) cooled to 0-5 Cwas gradually pressed out from an auxiliary high-pressure cell by a freshCO2 flow (2 g min-1) to the reaction autoclave. During the addition, thepressure in the latter raised up to 80 bar. The reaction mixture was stirredat 0-5 C for the time specified in Table 1. Then, CO2 was removed bydecompression and the residue was poured onto ice water (50 ml). Theresulted suspension was extracted with EtOAc (4 ¡Á 20 ml), the combinedorganic extracts were washed successively with saturated aqueous NaHCO3(2 ¡Á 20 ml) and water (25 ml) and dried over anhydrous Na2SO4. Thesolvent was removed under reduced pressure to afford corresponding nitrocompounds 2, 4 (see Table 1). Compounds 2a,b and 7 were synthesizedby similar procedures using 1.2 g (11.0 mmol) or 6.0 g (55 mmol) ofN2O5, respectively.

Any one of these steps may be slow and thus may serve as the rate determining step. In general, however, in the presence of the catalyst, the overall rate of the reaction is faster than it would be if the reactants were in the gas or liquid phase.

Reference£º
Article; Kuchurov, Ilya V.; Fomenkov, Igor V.; Zlotin, Sergei G.; Tartakovsky, Vladimir A.; Mendeleev Communications; vol. 23; 2; (2013); p. 81 – 83;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Analyzing the synthesis route of 875444-08-9

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 875444-08-9, if you are interested, you can browse my other articles.

We know that the rate of many reactions can be accelerated by catalysts. A catalyst speeds up the rate of a reaction by lowering the activation energy; in addition, the catalyst is regenerated in the process. 875444-08-9, name is (4S,5R)-5-(3,5-Bis(trifluoromethyl)phenyl)-4-methyloxazolidin-2-one,below Introduce a new synthetic route., 875444-08-9

875444-08-9, The chiral intermediate (4S,5R)-5-(3,5-bis(trifluoromethyl)phenyl)-4-methyloxazolidin-2-one (compound of formula XV; cf. also compound 11 in Scheme 3) (28.0 g) prepared by the procedure of WO 2007/005572 is dissolved in DMF (300 mL) and cooled to -15C. 2 M NaHMDS (39.2 mL, 1.05 eq) was then added over 1 h, followed by addition of the blaryl chloride 7 (Scheme 3) (28.0 g) in DMF (50 mL), maintaining the internal temperature below-10 C. The mixture was warmed to + 12 C and was aged until complete conversion took place. Then 5M HCl (35 mL) was added, followed by 160 mL of 10% IPAC/Heptanes and 340 mL of water, keeping the temperature between 10C and 20C throughout. The layers were cut and the organic layer was washed twice with 150 mL of 1/1 DMF/water followed by two 140 mL water washes. The organic layer was then removed under reduced pressure and the resulting residue was purified by flash chromatography (EtOAclhexanes) to remove the excess oxazolidinone 11 (Scheme 3). The obtained colorless oil was then dissolved in refluxing heptanes (200 mL) and the solution was slowly cooled to -20 C. The resulting slurry was then stirred at -20 C for 2 hours and filtered. The filter cake was washed with cold heptanes and was then dried, yielding 44.0 g (88%) of the desired product of compound of formula XV” (anacetrapib) as an amorphous material. An impurity of compound of formula XVII” (4S,5R)-5-(3,5-bis(trifluoromethyl)phenyl)-3-((5′-ethyl-4′-fluoro-2′-methoxy-4-(triftuoromethyl) biphenyl-2-yl)methyl-4-methyloxazolidin-2-one (DMAP) is present in the thus obtained anacetrapib in an amount of about 3 % by weight relative to the total amount of anacetrapib product. DMAP originates from 2′-(chloromethyl)-5-ethyl-4-fluoro-2-mothoxy-4′-trifluoromethyl)biphenyl (EBFCI) representing an impurity which forms in the preparation path of 2′-(chloromethyl)-4-fluoro-5-isopropyl-2-methoxy-4′-(trifluoromethyl)biphenyl under the above described conditions.

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 875444-08-9, if you are interested, you can browse my other articles.

Reference£º
Patent; LEK Pharmaceuticals d.d.; EP2468736; (2012); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

New learning discoveries about 497-25-6

Any one of these steps may be slow and thus may serve as the rate determining step. In general, however, in the presence of the catalyst, the overall rate of the reaction is faster than it would be if the reactants were in the gas or liquid phase.

The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism., 497-25-6, If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 497-25-6, name is Oxazolidin-2-one. A new synthetic method of this compound is introduced below.

497-25-6, Example 40: Synthesis of 4-{(3-chloro-5-trifluoromethyl-benzyl)-[5-(2-oxo-oxazolidin- 3-yl)-pyrimidin-2-yl]-amino}-2,6-diethyl-piperidine-1 -carboxylic acid isopropyl ester; A mixture of 4-[(5-bromo-pyrimidin-2-yl)-(3-chloro-5-trifluoromethyl-benzyl)-amino]- 2,6-diethyl-piperidine-1-carboxylic acid isopropyl ester (0.05 mmol, 30 mg), oxazolidin-2-one (0.05 mmol, 5 mg), cupper iodide (0.05 mmol, 10 mg), frans-cyclohexane-1 ,2-diamine (0.05 mmol, 6 mg) and potassium carbonate (0.1 mmol, 14 mg) in 1 ,4-dioxane (0.3 ml_) is allowed to warm to 110 0C and stirred for 19 hours. The mixture is cooled to room temperature and then added aq. ammonia. The mixture is extracted with CH2CI2. The combined organic layer is washed with brine, dried over Na2SO4, filtrated, and concentrated under reduced pressure. The obtained residue is purified by silica gel column chromatography (eluent: n- hexane / EtOAc) to give 4-{(3-chloro-5-trifluoromethyl-benzyl)-[5-(2-oxo-oxazolidin-3-yl)- pyrimidin-2-yl]-amino}-2,6-diethyl-piperidine-1-carboxylic acid isopropyl ester (26 mg, 87%); ESI-MS m/z: 598 [M+1]+, Retention time 2.44 min (condition A).

Any one of these steps may be slow and thus may serve as the rate determining step. In general, however, in the presence of the catalyst, the overall rate of the reaction is faster than it would be if the reactants were in the gas or liquid phase.

Reference£º
Patent; NOVARTIS AG; NOVARTIS PHARMA GMBH; WO2008/9435; (2008); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Simple exploration of 90319-52-1

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 90319-52-1, if you are interested, you can browse my other articles.

A balanced equation for a chemical reaction indicates what is reacting and what is produced, but it reveals nothing about how the reaction actually takes place. The reaction mechanism is the process, or pathway, by which a reaction occurs.4442-54-0. An updated downstream synthesis route of 4442-54-0 as follows., 90319-52-1

General procedure: n-Butyllithium (1.15mL, 1.0equiv, 2.3M in hexanes) was added to a cooled until ?75¡ãC solution of the corresponding oxazolidinone (2.6mmol) in anhydrous THF (12mL), then the resulting solution was warmed to ?30¡ãC and stirred for 20min. At the same temperature, a solution of cinnamoyl chloride (1.0equiv) in anhydrous THF (7mL) was added dropwise and then allowed to rise to at room temperature and left overnight with continuous stirring. After work-up with 10percent NH4Cl (15mL), the organic layer was separated and the aqueous layer was extracted with ethyl acetate (2¡Á25ml). The combined organic phase was dried over Na2SO4, filtered and evaporated under reduced pressure. The crude products were purified by chromatography or crystallized from appropriate solvents. 4.3.1 (R)-4-Phenyl-3-[(E)-(3-phenylacryloyl)]-oxazolidin-2-one 2a. White crystals (0.28g, 62percent yield) after crystallization (Et2O/EtOAc, 1:1); mp 169?170¡ãC. 1H NMR (200MHz, CDCl3) delta 4.32 (dd, J=3.8, 8.8Hz, 1H, NCHCH2), 4.74 (t, J=8.8Hz, 1H, NCHCH2), 5.56 (dd, J=3.8, 8.8Hz, 1H, NCHCH2), 7.28?7.48 (m, 8H, aromH), 7.52?7.66 (m, 2H, aromH), 7.78 (d, J=15.7Hz, 1H, CH=CH?CO), 7.95 (d, J=15.7Hz, 1H, CH=CH?CO). 13C NMR (75MHz, CDCl3) delta 58.0, 70.1, 117.0, 126.1, 128.7, 128.8, 129.0, 129.3, 130.8, 134.6, 139.2, 146.8, 153.9, 164.9, 90319-52-1

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol. 90319-52-1, if you are interested, you can browse my other articles.

Reference£º
Article; Leitis, Zigm?rs; L?sis, Viesturs; Tetrahedron Asymmetry; vol. 27; 17-18; (2016); p. 843 – 851;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Analyzing the synthesis route of 108149-63-9

In every case, we must determine the overall rate law from experimental data and deduce the mechanism from the rate law (and sometimes from other data). you can also browse my other articles about 108149-63-9 if you are interested.

108149-63-9, The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 108149-63-9, name is (R)-tert-Butyl 4-(hydroxymethyl)-2,2-dimethyloxazolidine-3-carboxylate. A new synthetic method of this compound is introduced below.

Compound 1-150 TFA salt (60.0 mg, 0.121 mmol) and compound 1-17 (84.0 mg, 0.363 mmol) were dissolved in dry THF (3.0 mL) in a 100 mL rbf under N2. The flask was cooled in an ice/water bath for 5 min. KHMDS (0.5 in toluene, 0.97 mL, 0.49 mmol) was added dropwise. The resulting rxn soln was stirred at 0C for 2 h then slowly warmed to RT in 1.5 h and continued to stir at RT for 1 h. The mixture was cooled to 0C again and quenched with slow addition of sat’d NH4C1 aq soln (4.5 mL). The mixture was diluted with EtOAc (50 mL) and sat’d NaHC03 aq soln (5 mL). The layers were separated and the organic layer was further washed with water (1 mL). The organic layer was then dried over anhydrous sodium sulfate, filtered, and concentrated. The resulting crude pdt was purified by normal phase flash chromatography using 0-10% MeOH/DCM as the gradient to afford compound 1-18., 108149-63-9

In every case, we must determine the overall rate law from experimental data and deduce the mechanism from the rate law (and sometimes from other data). you can also browse my other articles about 108149-63-9 if you are interested.

Reference£º
Patent; EXELIXIS, INC.; XU, Wei; (170 pag.)WO2017/4609; (2017); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Some tips on 2346-26-1

Any one of these steps may be slow and thus may serve as the rate determining step. In general, however, in the presence of the catalyst, the overall rate of the reaction is faster than it would be if the reactants were in the gas or liquid phase.

2346-26-1, The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 2346-26-1, name is Oxazolidine-2,4-dione. A new synthetic method of this compound is introduced below.

)._A solution of the solid from above (500 mg, 5.00 mmol), benzyl chloride (0.569 mL, 5.00 mmol), and TEA (0.69 mL, 5.00 mmol) in CHC13 (5.00 mL) was stirred at 60 C for 48 hours . EtOAc (50.0 mL) and 1M aq HCl (50.0 mL) were added. The aq phase was extracted with CHC13 (3X50 mL), and the combined organic phases were washed with brine (50 mL), dried over MgS04, filtered, and concentrated under reduced pressure to provide the title compound as a solid (0.894 g, 95%) 1H NMR (300 MHz, CDC13) delta 7.44-7.28 (m, 5H), 4.68 (s, 2H), 4.67 (s, 3H)., 2346-26-1

Any one of these steps may be slow and thus may serve as the rate determining step. In general, however, in the presence of the catalyst, the overall rate of the reaction is faster than it would be if the reactants were in the gas or liquid phase.

Reference£º
Patent; EPIGENETIX, INC.; ALBERT, Jeffrey, S.; JOHNSTONE, Shawn; JONES, Paul; WO2014/152029; (2014); A2;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem