Simple exploration of 145589-03-3

145589-03-3 (R)-4-Benzyl-3-(3-methylbutanoyl)oxazolidin-2-one 11391340, aoxazolidine compound, is more and more widely used in various fields.

145589-03-3, (R)-4-Benzyl-3-(3-methylbutanoyl)oxazolidin-2-one is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Example 1 Preparation of cis-2(S),7(S)-diisopropyl-octe-4-enedioic acid (IIb) from VIIIa To a solution of 4(S)-benzyl-3-isovaleroyl-oxazolidin-2-one (12 g, THL 2000, 41, 10085), dissolved in THF (80 ml), under inert atmosphere cooled to -70 C. 1M-solution of lithium hexamethyldisilazide in toluene (LiHMDS, 50 ml) was slowly added dropwise under stirring at -70 C. within a period of ca. 1 hr. After stirring at the same temperature for 1 hr the reaction mixture was wormed to 0 C., then again cooled down to -70 C. and cis-1,4-dibromo-but-2-ene (4.5 g) in THF (10 ml) was slowly added, the reaction mixture shortly stirred at -70 C., then warmed to it and stirred for 7 hrs and finally poured on mixture of ice water and saturated sodium chloride solution (400 ml, 1:1). The aqueous phase was extracted 3 times with ethylacetate (3*200 ml), the combined organic phases washed once with saturated sodium bicarbonate solution (200 ml), dried with sodium sulphate, filtered and the filtrate evaporated under vacuum providing compound (IIa) as cis-2(S),7(S)-diisopropyl-oct-4-enedioic acid [bis((4(S)-benzyl-oxazolidin-2-one)]amide as a single diastereomer: crude 9.2 g (77% isolated yield) as a yellow semi crystalline oil. To stirred solution of the crude compound (IIa) (9.2 g), dissolved in a mixture of THF (100 ml) and water (30 ml), at 0 C. 35% aqueous hydrogen peroxide (30 ml) followed by 5 M aqueous solution of LiOH (70 ml) were added. After stirring for 1 hr at 0 C. the solution was warmed to rt and stirred over night. After addition of 0.5 M aqueous solution of Na2SO3 (70 ml) and water (70 ml) the aqueous phase was washed 3 times with MTBE to recover the chiral auxiliary. The aqueous phase was then acidified with conc.-HCl to pH 1, extracted 3 times with MTBE (3*200 ml), the combined organic phases dried over MgSO4, filtered and the filtrate concentrated under reduced pressure providing the title compound (IIb) (cis-2(S),7(S)-2,7-diisopropyloct-4-enedioic acid) as a single diastereomer as white crystals crude 3.9 g (95% isolated yield): Anal. calculated for C14H24O4: C, 65.60; H, 9.44; O 24.97. Found: C, 65.53; H, 9.38; O 24.88., 145589-03-3

145589-03-3 (R)-4-Benzyl-3-(3-methylbutanoyl)oxazolidin-2-one 11391340, aoxazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; CarboDesign LLC; US2011/137047; (2011); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Simple exploration of 90319-52-1

90319-52-1, 90319-52-1 (R)-4-Phenyloxazolidin-2-one 730425, aoxazolidine compound, is more and more widely used in various fields.

90319-52-1, (R)-4-Phenyloxazolidin-2-one is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

[003491 Step A: Preparation of (R)-3-cinnamoyl-4-phenyloxazolidin-2-one: A THF (50 mE) solution of (R)-4-phenyloxazolidin-2-one (5.90 g, 36.2 mmol) was cooled to -78 ¡ãC and treated with lithium bis(trimethylsilyl)amide (36.9 mL, 36.9 mmol, 1.0 M in THF) dropwise. over 15 minutes. After 15-minute stirring at -78 ¡ãC, a THF (10 mE) solution of cinnamoyl chloride (6.33 g, 38.0 mmol) was introduced. The mixture was stirred for 1 hour at -78 ¡ãC and 2 hours at ambient temperature before it was quenched with saturated NaHCO3 (50 mL) and stirred for 1 hour. The mixture was diluted with EtOAc (200 mL), washed with water and brine, dried over MgSO4, filtered and concentrated to give the product as a pale yellow solid (10.6 g, 99.9percent yield). MS (apci) mlz = 293.9 (M+H).

90319-52-1, 90319-52-1 (R)-4-Phenyloxazolidin-2-one 730425, aoxazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; ARRAY BIOPHARMA INC.; ALLEN, Shelley; ANDREWS, Steven Wade; BLAKE, James F.; BRANDHUBER, Barbara J.; JIANG, Yutong; KERCHER, Timothy; WINSKI, Shannon L.; WO2014/78372; (2014); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Some tips on 145589-03-3

145589-03-3 (R)-4-Benzyl-3-(3-methylbutanoyl)oxazolidin-2-one 11391340, aoxazolidine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.145589-03-3,(R)-4-Benzyl-3-(3-methylbutanoyl)oxazolidin-2-one,as a common compound, the synthetic route is as follows.

To a solution of 5.6 g of N-isovaleroyl-(S)-4-benzyl-oxazolidin-2-one in 12 ml of toluene are added, at 00C, first of all 23.5 ml of a 1 -molar solution of bis-trimethylsilyl-lithium amide in tetrahydrofuran, then 5.7 g of dimethylpropylene urea. The solution obtained is added dropwise at 00C to a solution of 6 g of trans -1 ,4-dibromobut-2-ene in 10 ml of toluene. After stirring, the mixture is acidified with diluted hydrochloric acid, separated, and the organic solution concentrated. The crude product is purified by chromatography on a column of silica gel (eluant: hexane/ethyl acetate 85:15)., 145589-03-3

145589-03-3 (R)-4-Benzyl-3-(3-methylbutanoyl)oxazolidin-2-one 11391340, aoxazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; NOVARTIS AG; NOVARTIS PHARMA GMBH; WO2007/6532; (2007); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Analyzing the synthesis route of 99395-88-7

The synthetic route of 99395-88-7 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.99395-88-7,(S)-4-Phenyloxazolidin-2-one,as a common compound, the synthetic route is as follows.

Example 21 (S,E)-3-(pent-2-enoyl)-4-phenyl oxazolidin-2-one The 4S-phenyl-2-oxazolidinone (5.6 g, 34.4 mmol) was placed in a three-necked flask, after it was purged with nitrogen, tetrahydrofuran was added and it was cooled to -78 C., then n-butyl lithium (1.6M, 22 ml, 35.4 mmol) was added dropwise, and the reaction was carried out for 30 minutes. After that, a solution of 2-pentenoyl chloride (4.2 g, 35.5 mmol) in tetrahydrofuran was added dropwise, and the reaction was continued for 30 minutes, then it was slowly raised to 0 C., the reaction was continued for 2 hours and quenched with saturated ammonium chloride solution. The reaction solution was then concentrated to remove tetrahydrofuran and extracted with ethyl acetate 3 times, then the organic phases were combined, washed with saturated brine, dried over anhydrous sodium sulfate, concentrated, and recrystallized with petroleum ether and ethyl acetate to give a white solid 8 g, yield: 95%. 1HNMR (300 MHz, CDCl3): delta 7.3-7.4 (5H, m), 7.1-7.2 (1H, m), 6.9-7.1 (1H, m), 5.5 (1H, dd, J=4.2, 19.0), 4.8 (1H, t, J=9.6, 18.7), 4.2 (1H, dd, J=3.7, 18.9), 2.2 (2H, m), 1.0 (3H, t, J=7.4, 14.9). ESI-MS: 246.4 (M+H)., 99395-88-7

The synthetic route of 99395-88-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Zhang, Qiang; Zhang, Rongxia; Tian, Guanghui; Li, Jianfeng; Zhu, Fuqiang; Jiang, Xiangrui; Shen, Jingshan; US2014/46074; (2014); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

New learning discoveries about 90319-52-1

90319-52-1, As the paragraph descriping shows that 90319-52-1 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.90319-52-1,(R)-4-Phenyloxazolidin-2-one,as a common compound, the synthetic route is as follows.

(R) -4-phenyl-2-oxazolidinone (16.3 g,1 eq.) Was dissolved in 180 ml of dichloromethane,A mixture of triethylamine (15.2 g, 1.5 equiv) was added with stirring at 0 ¡ã C,4-dimethylaminopyridine (DMAP) (366 mg, 0.03 equiv)Subsequently, propionyl chloride (9.2 g, 1 equivalent) was added dropwise, and the mixture was stirred at 0 ¡ã C for 1 hour,Add methylene chloride diluted, washed with water, saturated sodium bicarbonate,The organic phase was dried over anhydrous sodium sulfate. The solvent was removed by evaporation under reduced pressure,Get the crude product. The crude product was purified by column chromatography,To give the title compound (III-a) (20.1 g, yield 92percent).

90319-52-1, As the paragraph descriping shows that 90319-52-1 is playing an increasingly important role.

Reference£º
Patent; Zhejiang Yongning Pharmaceutical Co., Ltd.; Ye Tianjian; Lu Xiuwei; Yu Guangliang; Liu Ting; (14 pag.)CN105085322; (2017); B;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Analyzing the synthesis route of 108149-60-6

108149-60-6, The synthetic route of 108149-60-6 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.108149-60-6,(S)-(-)-3-tert-Butoxycarbonyl-4-methoxycarbonyl-2,2-dimethyl-1,3-oxazolidine,as a common compound, the synthetic route is as follows.

(R)-2,2-dimethyl-oxazolidin-3,4-dicarboxylic acid 3-t-butyl ester 4-methyl ester (11.4 g, 44.0 mmol) obtained in Step A was dissolved in dichloromethane (100 ml), to which was added diisopropyl aluminum hydride (1.5M toluene, 66 ml) at -78 C. While heating to room temperature, the mixture was stirred for 18 hours. After completion of the reaction, methanol (20 ml) and sodium hydroxide solution (1 N, 200 ml) were slowly added thereto, and the organic material was extracted with dichloromethane and dried with anhydrous magnesium sulfate. The solvent was removed under reduced pressure, and the residue was purified by column chromatography to give the title compound (9.7 g, 95%).

108149-60-6, The synthetic route of 108149-60-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; LG LIFE SCIENCES LTD.; PARK, Heui Sul; KOO, Sun Young; KIM, Hyoung Jin; LEE, Sung Bae; KWAK, Hyo Shin; ARTEMOV, Vasily; KIM, Soon Ha; (23 pag.)US2016/200709; (2016); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Brief introduction of 90319-52-1

90319-52-1, The synthetic route of 90319-52-1 has been constantly updated, and we look forward to future research findings.

90319-52-1, (R)-4-Phenyloxazolidin-2-one is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

[0332j To a solution of Preparation 40H (1.4 g, 4.8 mmol) in THF (15 mL) was added NEt3 (1.3 mL, 9.6 mmol). The reaction mixture was cooled to 0 ¡ãC and trimethylacetyl chloride (0.7 13 mL, 5.8 mmol) was added dropwise and the resulting solution stirred for30 mm at 0 ¡ãC. In a separate flask, (R)-4-phenyloxazolidin-2-one (3, 1.01 g, 6.24 mmol) in THF (45 mL) at 0 ¡ãC was treated with 1 M LiHMDS solution in THF (dropwise addition of 6.24 mL, 6.24 mmol) and stirred at 0¡ãC. The lithiate was added via cannula to the first flask. The reaction mixture was allowed to warm to rt and was stirred for 3 hours. LC/MS indicated the complete consumption of the starting carboxylic acid and formationof the desired imide. The reaction mixture was poured onto saturated aqueous ammonium chloride (50 mL) and the layers were separated. The aqueous layer was extracted with EtOAc (3 x 50 mL). The combined organic extracts were dried over anhydrous sodiumsulfate and chromatographed on silica using EtOAc/Hexanes 0 to 100percent gradient to givePreparation 401 as a white foam in 83percent yield. m/z (M+H) = 433.3. ?H-NMR (400 MHz;CDC13): oe 8.80 (d, J= 4.5 Hz, 1H), 8.11 (dd, J= 9.1, 5.7 Hz, 1H), 7.63 (dd, J 10.5, 2.5Hz, 1H), 7.48-7.43 (m, 1H), 7.40-7.30 (m, 6H), 5.47-5.44 (m, 1H), 4.71 (t, J 8.9 Hz,1H), 4.31-4.28 (m, 1H), 3.20-3.11 (m, 3H), 2.49-2.46 (m, 1H), 1.82-1.67 (m, 6H).

90319-52-1, The synthetic route of 90319-52-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; FLEXUS BIOSCIENCES, INC.; BECK, Hilary Plake; JAEN, Juan Carlos; OSIPOV, Maksim; POWERS, Jay Patrick; REILLY, Maureen Kay; SHUNATONA, Hunter Paul; WALKER, James Ross; ZIBINSKY, Mikhail; BALOG, James Aaron; WILLIAMS, David K.; MARKWALDER, Jay A.; SEITZ, Steven P.; CHERNEY, Emily Charlotte; ZHANG, Liping; SHAN, Weifang; GUO, Weiwei; HUANG, Audris; (231 pag.)WO2016/73774; (2016); A2;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Analyzing the synthesis route of 90319-52-1

The synthetic route of 90319-52-1 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.90319-52-1,(R)-4-Phenyloxazolidin-2-one,as a common compound, the synthetic route is as follows.

Step A: Preparation of (R,E)-3-(3-(3,5-difluorophenyl)acryloyl)-4- phenyloxazolidin-2-one: To a solution of (E)-3-(3,5-difluorophenyl)acrylic acid (10.0 g, 54.3 mmol) in Et20 (150 mL) at 0 ¡ãC was added DIEA (9.48 mL, 54.3 mmol) followed by pivaloyl chloride (6.69 mL, 54.3 mmol). The mixture was stirred at 0 ¡ãC for 1 hour and cooled to – 78 ¡ãC. Meanwhile (R)-4-phenyloxazolidin-2-one (8.86 g, 54.3 mmol) in THF (200 mL) was cooled to -78 ¡ãC and butyllithium (21.7 mE, 2.5 M, 54.3 mmol) was added slowly. The mixture was stirred for 20 minutes at -78 ¡ãC and transferred by cannula to the solution of mixed anhydride. The combined mixture was stirred at -78 ¡ãC for 15 mm, allowed to warm to 0 ¡ãC and stirred for an additional 30 minutes. The reaction mixture was quenched with saturated NH4CI (25 mL), diluted with EtOAc (600 mL), washed with water, NaHCO3, and brine, dried over MgSO4, and concentrated in vacuo. The crude material was purified by silica column chromatography, eluting with 10-20percent Ethyl acetate/Hexanes to afford the product (11.0 g, 61.5percent yield)., 90319-52-1

The synthetic route of 90319-52-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; ARRAY BIOPHARMA INC.; ALLEN, Shelley; BRANDHUBER, Barbara, J.; KERCHER, Timothy; KOLAKOWSKI, Gabrielle, R.; WINSKI, Sharon, L.; WO2014/78323; (2014); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

New learning discoveries about 90319-52-1

As the paragraph descriping shows that 90319-52-1 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.90319-52-1,(R)-4-Phenyloxazolidin-2-one,as a common compound, the synthetic route is as follows.

A reactor was charged with THF (1138 kg) and 2-((ls,4s)-4-(6-fluoroquinolin- 4-yl)cyclohexyl)acetic acid (105.1 kg, 1.0 equiv). The mixture was cooled to -5 to 5 C. Pivaloyl chloride (64.0 kg, 1.45 equiv) was charged. Triethylamine (101.1 kg, 2.70 equiv) was charged, maintaining temperature -5 to 5 C, then the mixture was aged 1 h. (i?)-(-)-4-Phenyl-2- oxazolidinone (68.1 kg, 1.15 equiv) and lithium chloride (20.2 kg, 1.30 equiv) were charged then the reactor wall was rinsed with THF (15.8 kg). The mixture was warmed to 25 C and held for 8 h. Water (1050.6 kg) and isopropyl acetate (825.8 kg) were added into the mixture. After mixing for 1 h, the phases were allowed to separate and the bottom aqueous layer was discarded. The organic stream was then washed with 10 wt% aqueous NaCl (1050 kg). The organic stream was concentrated until 500 L left. Isopropyl acetate (466.3kg) was added, and the organic stream was concentrated until 500 L left. Isopropyl acetate (1850.5 kg) was added into the mixture at 45-55 C and stirred for 1 h. The organic stream was filtered to remove inorganics and the filter was rinsed with isopropyl acetate (187.0 kg). The combined stream was concentrated under reduced pressure until 700 L was left. [00236] The organic stream was heated to 70-75 C until the solid completely dissolved. The mixture was cooled to 45 C then seeds (0.2 kg) were added into the mixture. The mixture was stirred for 1 h. ^-Heptane (1178.5 kg) was added into the mixture over 3 hours, then aged at 45 C for lh. The mixture was cooled to 10 C over 4 hours, and allowed to age for 6 hours. The slurry was filtered with a centrifuge. The solid was rinsed with a pre-mixed solution of isopropyl acetate (45.2 kg) and ^-heptane (321.5 kg). The solids were then rinsed with ft-heptane (2 x 358.2 kg). The cake was dried under vacuum at <50C to obtain 139.6 kg product in 88.2% yield, 99.95 HPLC area percent as a white solid. NMR (600 MHz, DMSO-de) 5 8.80 (d, J = 4.5 Hz, 1H), 8.08 (dd, J = 9.2, 5.8 Hz, 1H), 7.92 (dd, J = 10.9, 2.6 Hz, 1H), 7.63 (td, J = 8.7, 2.6 Hz, 1H), 7.43 (d, J = 4.5 Hz, 1H), 7.39-7.35 (m, 2H), 7.34-7.27 (m, 3H), 5.50 (dd, J = 8.7, 3.8 Hz, 1H), 4.75 (t, J = 8.7 Hz, 1H), 4.16 (dd, J= 8.7, 3.8 Hz, 1H), 3.34-3.25 (m, 1H), 3.17 (dd, J = 15.6, 6.8 Hz, 1H), 3.02 (dd, J = 15.7, 8.0 Hz, 1H), 2.35 (br s, 1H), 1.83-1.75 (m, 2H), 1.73-1.56 (m, 6H); 13C NMR (150 MHz, DMSO-de) d 171.6, 160.7, 159.1, 153.7, 152.2, 152.1, 149.8, 145.1, 140.0, 132.6, 132.6, 128.7, 127.9, 127.1, 127.1, 125.7, 119.0, 118.8, 118.4, 107.1, 107.0, 69.9, 57.0, 37.4, 36.5, 29.6, 29.0, 28.7, 27.4. HRMS (ESI) calculated for C26H26FN2O3 [M + H]+: 433.1922, found 433.1936., 90319-52-1

As the paragraph descriping shows that 90319-52-1 is playing an increasingly important role.

Reference£º
Patent; BRISTOL-MYERS SQUIBB COMPANY; DELMONTE, Albert, J.; COHEN, Benjamin, M.; FRAUNHOFFER, Kenneth, Joseph; KOLOTUCHIN, Sergei; GONZALEZ-BOBES, Francisco; BEUTNER, Gregory, Louis; FREITAG, Adam, Joseph; BULTMAN, Michael, Scott; FAN, Yu; MAITY, Prantik; YOUNG, Ian, Scott; BECK, Hilary, Plake; OSPOV, Maksim; POWERS, Jay, Patrick; REILLY, Maureen, Kay; SHUNATONA, Hunter, Paul; WALKER, James, Ross; ZIBINSKY, Mikhail; (75 pag.)WO2019/6292; (2019); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Some tips on 90319-52-1

90319-52-1 (R)-4-Phenyloxazolidin-2-one 730425, aoxazolidine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.90319-52-1,(R)-4-Phenyloxazolidin-2-one,as a common compound, the synthetic route is as follows.

Example 24 3-[(3R)-1-oxo-3-[3-(phenylmethoxy)phenyl]pentyl]-4R-phenyl-2-Oxazolidinone The 4R-phenyl-2-oxazolidinone (3.5 g, 21.4 mmol) was placed in a three-necked flask, after it was purged with nitrogen, tetrahydrofuran was added and it was cooled to -78¡ã C., then n-butyl lithium (1.6M, 13.8 ml, 22 mmol) was added dropwise, and the reaction was carried out for 30 minutes. After that, a solution of (R)-3-(3-(benzyloxy)phenyl)pentanoyl chloride (7.1 g, 23.6 mmol) in tetrahydrofuran was added dropwise, the reaction was continued for 30 minutes, then it was slowly raised to 0¡ã C., the reaction was continued for 2 hours, and then quenched with saturated ammonium chloride solution. The reaction solution was then concentrated to remove tetrahydrofuran and extracted with ethyl acetate 3 times, then the organic phases were combined, washed with saturated brine, dried over anhydrous sodium sulfate, concentrated, and recrystallized with petroleum ether and ethyl acetate to give a white solid 8.6 g, yield: 85percent. 1HNMR (CDCl3): delta 7.3-7.5 (8H, m), 7.1-7.2 (3H, m), 6.7-6.9 (3H, m), 5.2 (1H, dd, J=3.7, 8.6), 5.1 (2H, s), 4.5 (1H, t, J=8.9, 17.1), 4.2 (1H, dd, J=3.5, 8.6), 3.5 (1H, dd, J=8.9, 16.4), 3.2 (1H, d, J=5.6), 3.1 (1H, m), 1.5-1.7 (2H, m), 0.9 (3H, t, J=7.3, 14.7). ESI-MS: 430.5 (M+H)., 90319-52-1

90319-52-1 (R)-4-Phenyloxazolidin-2-one 730425, aoxazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; Zhang, Qiang; Zhang, Rongxia; Tian, Guanghui; Li, Jianfeng; Zhu, Fuqiang; Jiang, Xiangrui; Shen, Jingshan; US2014/46074; (2014); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem