Analyzing the synthesis route of 80-65-9

The synthetic route of 80-65-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.80-65-9,3-Aminooxazolidin-2-one,as a common compound, the synthetic route is as follows.

General procedure: Following the addition of 4-(4-fluorophenoxy) butyric acid (0.71 g, 3.6 mmol) to 20 mL ofdichloromethane in a 50 mL three-necked round-bottom flask, thesolution was agitated until dissolution. Subsequently, EDCI (0.85 g,4.44 mmol) HOBt (0.6 g, 4.44 mmol) and triethylamine (0.84 g,9.25 mmol) were added in turn at 0 C. Stirring in an ice bath for 1 h,3-amino-2-oxazolidinone (0.37 g, 3.6 mmol) was added again. Thesolutionwas brought to 25 C and stirred overnight. Following TLC,the product was filtered by vacuum and dried under rotary evaporation.The product was a white solid weighing 0.51 g with a yieldof 50.2%.

The synthetic route of 80-65-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Jiang, Kai; Yan, Xinlin; Yu, Jiahao; Xiao, Zijian; Wu, Hao; Zhao, Meihua; Yue, Yuandong; Zhou, Xiaoping; Xiao, Junhai; Lin, Feng; European Journal of Medicinal Chemistry; vol. 194; (2020);,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Some tips on 147959-19-1

147959-19-1 (S)-tert-Butyl 2,2-dimethyl-4-(2-oxoethyl)oxazolidine-3-carboxylate 10586317, aoxazolidine compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.147959-19-1,(S)-tert-Butyl 2,2-dimethyl-4-(2-oxoethyl)oxazolidine-3-carboxylate,as a common compound, the synthetic route is as follows.

ith key building block 6 in hand, its nitroaldol (Henry) reaction with nitromethane was examined (Table 1). LiAlH418- TBAF19- as well as t-BuOK20-catalyzed Henry reactions led to nitro alcohols 12 and 13 with low diastereoselectivity, reflecting that the existing stereogenic center is too far away from the newly created one to exert appreciable asymmetric induction (Table 1, entries 1-3).21 An obvious way of resolving this problem was the introduction of additional chiral information, i.e. application of a chiral catalyst. In fact double stereodifferentiation using Shibasaki’s well established heterobimetallic (,S)-BINOL catalyst 1422 (5 mol%, THF, -40 C, 3 d) led to 12 with high diastereoselectivity albeit in low yield (Table 1, entry 4).Recently, other highly efficient chiral catalysts for asymmetric Henry reactions have been developed. Thus, Corey23 and Maruoka24 have utilized chiral quaternary ammonium fluorides as catalysts while Trost25 has presented a dinuclear zinc catalyst. Salen-cobalt(II) complexes have been used by Yamada whereas J¡ãrgensen and Evans have introduced bis(oxazoline)-coprhoer(II) complexes. The latter seemed to be the catalysts of choice, at least for aliphatic aldehydes, with respect to attainable yields and degree of stereoselectivity. EPO Table 1. Diastereoselective Henry Reaction of Aldehyde 6 with Nitromethaneyield ratio0 entry catalyst conditions(%)a 12:131 LiAlH4 THF, rt 53 56:442 TBAF THF, rt 33 43:573 r-BuOK t- 72 23:77BuOH/THF,00C4 14 THF, -40 C 45 98:25 {Cu[(+> EtOH, rt 87 92:815]} (OAc)26 (CuK-)- EtOH, rt 85 9:9115]}(OAc)27 {Cu[(+> EtOH, rt 94 97:316]}(OAc)28 (Cu[(-)- EtOH, rt 91 8:9216I)(OAc)2a isolated yield b determined by HPLC analysis of crude reaction mixtures EPO Indeed application of Evans’ bis(oxazoline) copper(II) acetate-based catalysts {Cu[(+)- 15]}(OAc)2 and in particular {Cu[(+)-16]}(OAc)2 (5 mol%, EtOH, rt, 5 d) gave the desired nitro alcohol 12 both with high diastereoselectivity and in high yield (Table 1 , entries 5 and 7). Finally, to obtain selectively diastereomer 13, aldehyde 6 was reacted with nitromethane in the presence of the enantiomeric catalysts {Cu[(-)-15]}(OAc)2 and {Cu[(-)-16]} (OAc)2 respectively. In these cases slightly lower stereoselectivities and yields were observed reflecting a mismatched pairing (Table 1, entries 6 and 8).; Nitroaldol adduct 13 was prepared from aldehyde 6 (243 mg, 1.0 mmol) and nitromethane (0.55 mL, 10.0 mmol) in the presence of indabox ligand (-)-16 (19.7 mg, 0.055 mmol) and Cu(OAc)2-H2O (10.0 mg, 0.05 mmol) as described for diastereomer 12. The diastereomeric ratio 13:12 was determined by HPLC analysis (n-heptane//-PrOH 99:1; LiChrospher 250×4, Si 60, 5 mum; 1.5 mL/min; 215 nm; 13: t,- = 33.8 min; 12: tr = 42.4 min) of the crude reaction mixture to be 92 : 8. The crude product was purified by flash chromatography on silica gel (/j-hexane:EtOAc 3:1) to give 13 (211 mg, 91%) as a 92:8 mixture of diastereomers. For analytical purposes a small quantity of the diastereomers was separated by preparative HPLC (/iota-heptane/-PrOH 99:1; Hibar 250×25, Si 60, 5 mum, 15 mL/min; 215 nm) to afford 13 as a colorless solid: mp 58-60 0C; [alpha]22D -31.6 (c 1.08, CH2Cl2); IR (KBr): 3408 cm”1, 1661, 1554, 1407; 1H NMR (500 MHz, CDCl3): delta 1.50 (s, 9 H), 1.51 (s, 3 H)5 1.56 (s, 3 H), 1.57-1.64 (m, 1 H), 1.77 (ddd, J= 2.0, 11.3, 13.4 Hz, 1 H), 3.67 (d, J- 8.9 Hz, 1 H), 4.03 (dd, J= 5.5, 8.9 Hz, 1 H), 4.22-4.31 (m, 2 H), 4.33 (dd, J= 4.0, 12.4 Hz, 1 H), 4.46 (dd, J= 8.6, 12.4 Hz, 1 H), 5.13 (bd, J= 3.8 Hz, 1 H); 13C NMR (125 MHz, CDCl3): delta 24.3 (CH3), 28.0 (CH3), 28.3 (CH3), 39.9 (CH2), 53.7 (CH), 65.5 (CH), 68.1 (CH2), 80.1 (CH2), 81.8 (C), 94.1 (C), 154.5 (C); MS (CI) m/z (rel. intensity): 305 (2) [M+H]+, 188 (100); Anal. Calcd for Ci3H24N2O6: C, 51.31; H, 7.95; N, 9.20. Found: C, 51.39; H, 7.94; N, 9.14.

147959-19-1 (S)-tert-Butyl 2,2-dimethyl-4-(2-oxoethyl)oxazolidine-3-carboxylate 10586317, aoxazolidine compound, is more and more widely used in various.

Reference£º
Patent; LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN; WO2006/94770; (2006); A2;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Brief introduction of 95715-86-9

The synthetic route of 95715-86-9 has been constantly updated, and we look forward to future research findings.

95715-86-9, Methyl (R)-N-Boc-2,2-dimethyloxazolidine-4-carboxylate is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A solution of LiOH (0.046 g, 1.928 mmol) in water (2 mL) was added to a solution of (S)-3-tert-butyl 4-methyl 2,2-dimethyloxazolidine-3,4-dicarboxylate (0.5 g, 1.928 mmol) in THF (6 mL). The resulting mixture was stirred at rt for 48 h, acidified to pH 4 with a 1 N aqueous solution of hydrochloric acid and extracted three times with ethyl acetate. The combined organic phases were dried (MgSO4), filtered and concentrated under vacuum to afford Cap L-25 (0.2 g) as a yellow oil. Used without further purification.1H NMR (400 MHz, DMSO-d6, mixture of rotomers) delta 12.72 (br. s., 1H), 4.33-4.23 (m, 1H), 4.18-4.09 (m, 1H), 3.93 (dt, J=9.0, 3.3 Hz, 1H), 1.56-1.51 (m, 3H), 1.42 (s, 7H), 1.39-1.33 (m, 6H);13C NMR (101 MHz, DMSO-d6, mixture of rotomers) delta 172.32-171.83 (m), 150.7, 93.76-93.42 (m), 79.66-79.01 (m), 65.94-65.54 (m), 58.79-58.57 (m), 28.05-27.74 (m, 3C), 24.93-24.75 (m), 24.16-23.99 (m).

The synthetic route of 95715-86-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Hewawasam, Piyasena; Lopez, Omar D.; Tu, Yong; Wang, Alan Xiangdong; Xu, Ningning; Kadow, John F.; Meanwell, Nicholas A.; Gupta, Samayamuthula Venkata Satya Arun Kumar; Kumar, Indasi J. Gopi; Ponugupati, Suresh Kumar; Belema, Makonen; US2015/23913; (2015); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

New learning discoveries about 133812-16-5

As the paragraph descriping shows that 133812-16-5 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.133812-16-5,(S)-4-Benzyl-3-(but-2-enoyl)oxazolidin-2-one,as a common compound, the synthetic route is as follows.

Method two: replace the nitrogen reaction bottle,24.5 g (0.1 mol) of intermediate (I) and 400 ml of anhydrous dichloromethane are added and the temperature is lowered to -50C to -60C,120 ml (0.12 mol) of a 1 M solution of titanium tetrachloride in dichloromethane are slowly added dropwise.Then 46.3 ml (0.24 mol) of N,N-tetramethylethylenediamine and 19.4 ml (0.2 mol) of N-methylpyrrolidone are added dropwise,The stirring was completed for 30 minutes.A solution of 19.5 g (0.2 mol) of 2,5-difluorobenzaldehyde in 70 ml of dichloromethane was slowly added dropwise and stirred for 2 h.The reaction temperature was slowly raised to 15C.TLC showed that the reaction was complete, add saturated ammonium chloride, filter, separate the organic layer, and wash with saturated sodium bicarbonate.After drying and silica gel column chromatography, 34.8 g of intermediate (II) was isolated with a yield of 90%.

As the paragraph descriping shows that 133812-16-5 is playing an increasingly important role.

Reference£º
Patent; Zhong Guifa; Wu Yiwu; Lan Xiaobing; (12 pag.)CN107459501; (2017); A;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Brief introduction of 95715-86-9

The synthetic route of 95715-86-9 has been constantly updated, and we look forward to future research findings.

95715-86-9, Methyl (R)-N-Boc-2,2-dimethyloxazolidine-4-carboxylate is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

6.1 g (23.36 mM) of 3- (1,1-dimethylethyl) -4-methyl- (S) -2,2-dimethyloxazolidin-3,4-dicarboxylate was dissolved in 12 ml of tetrahydrofuran solution was added 1.4 g (37 mM) of sodium borohydride,Was suspended in 12 ml of tetrahydrofuran solution and suspended dropwise over 30 minutes at room temperature.After dropwise addition, cool the reaction solution to 0 ~ 5 .To this mixed solution, a boron trifluoride diethyl ether solution32 ml (265.8 mM) of 10 ml of a tetrahydrofuran solutionIs added and the mixture is heated. Reflux for 6 hours. After confirming that the reaction progress was completed by TLC, then cool to 0 ~ 5 .20 ml of a tetrahydrofuran solution is added to the reaction mixture, stirred at the same temperature for 30 minutes, and then filtered.12 ml of distilled water: tetrahydrofuran solution (1: 1) was added to the filtrate,Were added dropwise at the same temperature, 13.7 g (343 mM) of caustic soda,Is dissolved in a small amount of distilled water, and the mixture is heated and refluxed for 2 hours.After confirming the completion of the reaction by TLC, the reaction mixture is cooled to room temperature.The filtrate was subjected to filtration to concentrate the filtrate tetrahydrofuran solution under reduced pressureRemove.100 ml of distilled water was added to the concentrated residue,Wash with 20 ml X 2 of isopropyl ether.The aqueous layer was extracted with 150 ml of methylene chloride x 3 timesThe next organic layers were combined and washed with 50 ml of purified water,The organic layer was dried over anhydrous magnesium sulfate, filtered,The methylene chloride was removed by concentration under reduced pressure to give the title compound5.2 g (96%) was obtained.

The synthetic route of 95715-86-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; MC Chem Co.,Ltd; Kim, Moon Sik; Kim, Hwe Nam; Kim, Hay Jin; Kwon, Junga; Yun, Ji Hay; (21 pag.)KR2015/31544; (2015); A;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

New learning discoveries about 875444-08-9

As the paragraph descriping shows that 875444-08-9 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.875444-08-9,(4S,5R)-5-(3,5-Bis(trifluoromethyl)phenyl)-4-methyloxazolidin-2-one,as a common compound, the synthetic route is as follows.

The chiral intermediate (4S,5R)-5-(3,5-bis(trifluoromethyl)phenyl)-4-methyloxazolidin-2-one (compound 11 in Scheme 3, prepared by procedure of WO 2007/005572) (28.0 g) is dissolved in DMF (300 mL) and cooled to – 15C. 2 M NaHMDS (39.2 mL, 1 .05 eq) was then added over 1 h, followed by addition of the biaryl chloride 7 (Scheme 3 ) (28.0 g) in DMF (50 mL), maintaining the internal temperature below -10 C. The mixture was warmed to + 12 C and was aged until complete conversion took place. Then 5M HCI (35 mL) was added, followed by 160 mL of 10% IPAC/Heptanes and 340 mL of water, keeping the temperature between 10C and 20C throughout. The layers were cut and the organic layer was washed twice with 150 mL of 1/1 DMF/water followed by two 140 mL water washes. The organic layerwas then removed under reduced pressure and the resulting residue was purified by flash chromatography (EtOAc/hexanes) to remove the excess oxazolidinone 11 (Scheme 3). The obtained colorless oil was then dissolved in refluxing heptanes (200 mL) and the solution was slowly cooled to -20 C. The resulting slurry was then stirred at -20 C for 2 hours and filtered. The filter cake was washed with cold heptanes and was then dried, yielding 44.0 g (88%) of the desired product of Formula IX (anacetrapib) as an amorphous material. The impurity (4S,5R)-5-(3,5-bis(trifluoromethyl)phenyl)-3-((5l-ethyl-4l-fluoro-2′-methoxy-4-(trifluoromethyl) biphenyl-2-yl)methyl)-4-methyloxazolidin-2-one (DMAP) (-3%), which is formed from 2′-(chloromethyl)-5-ethyl-4- fluoro-2-methoxy-4′-(trifluoromethyl)biphenyl (EBFCI) present in the starting material under the conditions described in Step 7, was detected in the product.

As the paragraph descriping shows that 875444-08-9 is playing an increasingly important role.

Reference£º
Patent; LEK PHARMACEUTICALS D.D.; HUMLJAN, Jan; MARAS, Nenad; WO2013/91696; (2013); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Simple exploration of 108149-63-9

108149-63-9 (R)-tert-Butyl 4-(hydroxymethyl)-2,2-dimethyloxazolidine-3-carboxylate 11053464, aoxazolidine compound, is more and more widely used in various.

108149-63-9, (R)-tert-Butyl 4-(hydroxymethyl)-2,2-dimethyloxazolidine-3-carboxylate is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: To a stirred solution of 6 (0.100 g, 0.433 mmol), appropriate substituted phenol (0.649 mmol) and PPh3 (0.182 g,0.693 mmol) in anhydrous toluene (5 mL) was added DIAD(0.14 mL, 0.693 mmol) at 80 C. After 3 h, EtOAc (40 mL)was added to the resulting solution. The organic layer was washed with 0.5 M aqueous NaOH (40 mL) and water (2 X40 mL), dried over Na2SO4, filtered and concentrated. The residue was purified by flash silica gel column chromatography eluting with Hexanes/EtOAc (9:1) or (95:5) to afford compounds 7a-s.

108149-63-9 (R)-tert-Butyl 4-(hydroxymethyl)-2,2-dimethyloxazolidine-3-carboxylate 11053464, aoxazolidine compound, is more and more widely used in various.

Reference£º
Article; Andrade, Saulo F.; Campos, Edmar F.S.; Teixeira, Claudia S.; Bandeira, Cristiano C.; Lavorato, Stefania N.; Romeiro, Nelilma C.; Bertollo, Caryne M.; Oliveira, Monica C.; Souza-Fagundes, Elaine M.; Alves, Ricardo J.; Medicinal Chemistry; vol. 10; 6; (2014); p. 609 – 618;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Simple exploration of 2346-26-1

2346-26-1 Oxazolidine-2,4-dione 97389, aoxazolidine compound, is more and more widely used in various.

2346-26-1, Oxazolidine-2,4-dione is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A solution of 1.0 g (4 mmol) of [4-(4-phenyl-1H-imidazol-1-yl)phenyl]methanol, prepared in step 12.1., 0.485 g (4.80 mmol) of 1,3-oxazolidine-2,4-dione and 1.15 g (4.38 mmol) of triphenylphosphine in 16 ml of tetrahydrofuran, cooled by a bath of acetone and ice, is admixed dropwise with 0.80 g (4 mmol) of diisopropyl azodicarboxylate in solution in 2 ml of tetrahydrofuran. The mixture is subsequently warmed to ambient temperature again and stirred overnight. 9 ml of the solution are taken, to which are added 12 ml of a 7N ammonia solution (84 mmol) in methanol. The mixture is left to react overnight, admixed with 4 g of silica and evaporated to dryness. The product is purified by chromatography on silica gel, eluting with a 95/5 then 93/7 and 90/10 mixture of dichloromethane and methanol. The product is recrystallized from a mixture of methanol and diisopropyl ether, to give 0.429 g of product in the form of white crystals. melting point ( C.): 200-203 LC-MS: M+H=351 1H NMR (DMSO) delta (ppm): 8.30 (s, 1H), 8.20 (s, 1H), 7.80 (d+m, 3H), 7.65 (d, 2H), 7.45-7.20 (m, 7H), 4.35 (s, 2H), 4.25 (d, 2H)

2346-26-1 Oxazolidine-2,4-dione 97389, aoxazolidine compound, is more and more widely used in various.

Reference£º
Patent; Sanofi-Aventis; US2006/14830; (2006); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Analyzing the synthesis route of 147959-19-1

The synthetic route of 147959-19-1 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.147959-19-1,(S)-tert-Butyl 2,2-dimethyl-4-(2-oxoethyl)oxazolidine-3-carboxylate,as a common compound, the synthetic route is as follows.

(S)-2,2-Dimethyl-4-(2-oxo-ethyl)-oxazolidine-3-carboxylic acid t-butyl ester (2.29 g, 9.44 mmol) was dissolved in dry tetrahydrofuran (25 mL). Then at -78 C., allyl magnesium bromide (1.0M in diethyl ether, 9.9 mL) was added. The mixture was warmed to -15 C. and stirred for 2 h. The mixture was extracted with diethyl ether and aqueous citric acid solution. The organic layer was washed with saturated sodium chloride solution, dried over sodium sulfate and solvents were evaporated to afford (S)-4-(2-hydroxy-pent-4-enyl)-2,2-dimethyl-oxazolidine-3-carboxylic acid tert-butyl ester (2.54 g) as an oil.

The synthetic route of 147959-19-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Berthel, Steven Joseph; Brinkman, John A.; Hayden, Stuart; Haynes, Nancy-Ellen; Kester, Robert Francis; McDermott, Lee Apostle; Qian, Yimin; Sarabu, Ramakanth; Scott, Nathan Robert; Tilley, Jefferson Wright; US2009/264445; (2009); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Some tips on 147959-19-1

147959-19-1 (S)-tert-Butyl 2,2-dimethyl-4-(2-oxoethyl)oxazolidine-3-carboxylate 10586317, aoxazolidine compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.147959-19-1,(S)-tert-Butyl 2,2-dimethyl-4-(2-oxoethyl)oxazolidine-3-carboxylate,as a common compound, the synthetic route is as follows.

To a stirred solution of N,N-diisopropylamine (1.74 ml) in tetrahydrofuran (8 ml) at -78 C. was added dropwise a solution of n-butyllithium (7.71 ml, 1.6 M in hexane) and the reaction mixture was then warmed to 0 C. for 15 min. After re-cooling to -78 C., a solution of diethyl 1-phenylethyl phosphonate (2.76 ml) in tetrahydrofuran (8 ml) was added dropwise. The mixture was stirred at -78 C. for 30 min and then a solution of (S)-2,2-dimethyl-4-(2-oxo-ethyl)-oxazolidine-3-carboxylic acid tert-butyl ester (2.00 g, CAS 147959-19-1) in tetrahydrofuran (8 ml) was added dropwise over 20 min. The mixture was then allowed to warm to room temperature and stirring continued at room temperature for 48 hours. The mixture was then quenched by addition of aqueous hydrochloric acid (2N) and then made basic by addition of aqueous sodium hydroxide solution (1 N). The mixture was taken up in ethyl acetate and the phases separated. The organic layer was washed sequentially with water and with saturated brine, dried over Na2SO4 and concentrated in vacuo. The residue was purified by column chromatography (SiO2, heptane/EtOAc gradient) to yield a yellow oil, (1.16 g, 44%); MS (ISP): 332.1 ([M+H]+).

147959-19-1 (S)-tert-Butyl 2,2-dimethyl-4-(2-oxoethyl)oxazolidine-3-carboxylate 10586317, aoxazolidine compound, is more and more widely used in various.

Reference£º
Patent; Galley, Guido; Goergler, Annick; Groebke Zbinden, Katrin; Norcross, Roger; US2010/29589; (2010); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem