Analyzing the synthesis route of 80-65-9

The synthetic route of 80-65-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.80-65-9,3-Aminooxazolidin-2-one,as a common compound, the synthetic route is as follows.,80-65-9

(3) 500 mg (1.2 mmol) of Compound IV was dissolved in 10 ml of methanol,Add 247 mg (2.4 mmol) of the furazolidone metabolite AOZ,After reacting at 60 C for 1.5 h or more, the reaction is completed and cooled to room temperature.Filtration, the furazolidone metabolite hapten V-AOZ 475mg,The mass spectrum of V-AOZ is shown in Figure 2.

The synthetic route of 80-65-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Guangdong Dayuan Oasis Food Security Technology Co., Ltd.; Guangdong Dayuan Food Medicine Security Co., Ltd.; Guangzhou Dayuan Food Security Co., Ltd.; Li Bin; Shi Song; Xie Junping; Jiang Linfeng; Ling Jialiang; Shi Linhua; Ren Jiyu; (19 pag.)CN108530373; (2018); A;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

New learning discoveries about 80-65-9

As the paragraph descriping shows that 80-65-9 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.80-65-9,3-Aminooxazolidin-2-one,as a common compound, the synthetic route is as follows.

80-65-9, EXAMPLE I 3-[(4-Chromanylidene)amino]-2-oxazolidinone A 62-g (0.61 mole) portion of 3-amino-2-oxazolidinone was charged in a 500-ml, 3-necked flask equipped with a thermometer, stirrer and reflux condenser, and treated successively with 92 ml of H2 O, 8 ml of 10% HCl and 42 g (0.28 mole) of 4-chromanone in 200 ml ethanol. The reaction mixture was refluxed for 36 hr, stripped in vacuo to one-half volume and cooled in the refrigerator overnight. The slurry was filtered and the white crystalline solid washed with 50 ml of isopropanol then 200 ml of ether and dried. M.p. 105-108. Yield: 44 g (68%). The filtrate was extracted with 250 ml of CHCl3, and the CHCl3 extract dried over MgSO4, filtered, and stripped in vacuo.

As the paragraph descriping shows that 80-65-9 is playing an increasingly important role.

Reference£º
Patent; Morton-Norwich Products, Inc.; US4093627; (1978); A;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Some tips on 2346-26-1

2346-26-1, 2346-26-1 Oxazolidine-2,4-dione 97389, aoxazolidine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.2346-26-1,Oxazolidine-2,4-dione,as a common compound, the synthetic route is as follows.

A mixture of 0.660 g (1.71 mmol) of trans-3-[5-(4-chloronaphthalen-1-yl)-1,3-dioxan-2-yl]propyl methanesulfonate, obtained in step 5.2, 0.208 g (2.05 mmol) of 1,3-oxazolidine-2,4-dione (J. Med. Chem., 1991, 34, 1542-1543) and 0.396 g (3.43 mmol) of 1,1,3,3-tetramethylguanidine in 10 ml of tetrahydrofuran is refluxed overnight under an inert atmosphere. The residue is taken up in 100 ml of ethyl acetate and 25 ml of water. Separation is carried out after settling out. The organic phase is washed with 25 ml of water and then 25 ml of a saturated aqueous sodium chloride solution. The aqueous phases are re-extracted with 50 ml of ethyl acetate. The organic phases are pooled, dried over sodium sulfate and concentrated under reduced pressure. The residue is purified by chromatography on silica gel, eluding with a 70/30 and then 60/40 mixture of cyclohexane and ethyl acetate, to obtain 0.483 g of product in the form of a white solid. Melting point:. 125-127 C.

2346-26-1, 2346-26-1 Oxazolidine-2,4-dione 97389, aoxazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; Sanofi Aventis; US2005/182130; (2005); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Brief introduction of 2346-26-1

The synthetic route of 2346-26-1 has been constantly updated, and we look forward to future research findings.

2346-26-1, Oxazolidine-2,4-dione is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5.2. 3-{[1-(1-Isoquinolyl)-4-piperidyl]methyl}-1,3-oxazolidine-2,4-dione A solution of 2.01 g (9.95 mmol) of diisopropyl azodicarboxylate (DIAD) in 5 ml of tetrahydrofuran is added dropwise, under an inert atmosphere, to a solution of 2.4 g (9.95 mmol) of [1-(1-isoquinolyl)-4-piperidyl]methanol, prepared in step 5.1, 2.87 g (10.94 mmol) of triphenylphosphine and 1.21 g (11.93 mmol) of 1,3-oxazolidine-2,4-dione in 40 ml of tetrahydrofuran, cooled to about -10 C., the temperature of the reaction medium being maintained throughout between -10 C. and 0 C. Stirring is then continued at 0 C. for 1 hour and then at 25 C. for 18 hours. The mixture is concentrated under reduced pressure and the residue is taken up in dichloromethane and 10 ml of aqueous 5% sodium hydroxide solution. The aqueous phase is separated out and then extracted twice with dichloromethane. The organic phases are combined and washed successively with aqueous hydrochloric acid solution (1N) and then with saturated aqueous sodium hydrogen carbonate solution and with saturated aqueous sodium chloride solution. The organic phase is dried over sodium sulfate and the filtrate is concentrated under reduced pressure. The residue thus obtained is purified by chromatography on silica gel, eluding with a 99/1/0.1 and then 98/2/0.2 mixture of dichloromethane, methanol and 28% aqueous ammonia. 3.57 g of oxazolidinedione are thus obtained in the form of an orange paste., 2346-26-1

The synthetic route of 2346-26-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Sanofi-Aventis; US2006/89344; (2006); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Simple exploration of 95530-58-8

95530-58-8 (R)-4-Isopropyloxazolidin-2-one 641505, aoxazolidine compound, is more and more widely used in various fields.

95530-58-8, (R)-4-Isopropyloxazolidin-2-one is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

95530-58-8, To a flame-dried 100 mL round-bottom flask was added 3,4,5-trimethoxyphenylacetic acid (2.10 g, 9.29 mmol). THF (25 mL) was added followed by Et3N (1.42 mL, 10.22 mmol). The solution was cooled to -78 C. Pivaloyl chloride (1.26 mL, 10.22 mmol) was added dropwise and the solution warmed to 0 C. and stirred for 1 h. In a separate flame-dried 50 mL round-bottom flask was added (R)-4-isopropyloxazolidin-2-one (1.0 g). THF (20 mL) was added and the solution cooled to -78 C. n-BuLi (6.83 mL, 9.29 mmol, 1.36 M) was added dropwise and the solution stirred at -78 C. for 15 min and then warmed to 25 C. where it was stirred for 15 min. The organolithium solution was transferred to the solution of the mixed anhydride via cannula at -78 C. The reaction was stirred at -78 C. for 15 min, warmed to 0 C., and stirred for 1 h. Water (10 mL) was added and the aqueous layer extracted with EtOAc (2*10 mL). The combined organics were washed with brine (10 mL), dried over anhydrous MgSO4, and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO2, 30 g) using 25% EtOAc in hexanes as the eluent to afford trimethoxyphenyl)acetyl)oxazolidin-2-one as a colorless oil (2.30 g, 88%): Rf=0.28 (1:1, Hex:EtOAc); 1H NMR (CDCl3) delta 6.55 (s, 2H), 4.44-4.41 (m, 1H), 4.29-4.24 (m, 2H), 4.19 (dd, J) 9.0, 3.0 Hz, 1H), 4.12-4.07 (m, 1H), 3.82 (s, 6H), 3.80 (s, 3H), 2.36-2.30 (m, 1H), 0.87 (d, J) 6.8 Hz, 3H), 0.78 (d, J) 7.1 Hz, 3H); 13C NMR (CDCl3) delta 171.2, 154.1, 153.2, 129.4, 106.7, 63.4, 60.9, 58.6, 56.2, 41.6, 28.4, 18.0, 14.7, 14.3; HRFAB[M+Li]344.1686 (calculated C17H23NO6Li: 344.1686).

95530-58-8 (R)-4-Isopropyloxazolidin-2-one 641505, aoxazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; University of Connecticut; US2009/105287; (2009); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Downstream synthetic route of 80-65-9

As the paragraph descriping shows that 80-65-9 is playing an increasingly important role.

80-65-9, 3-Aminooxazolidin-2-one is a oxazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

80-65-9, (b) 0.5 g (2.0 mmol) of Compound II was dissolved in 10 ml of methanol, 0.24 g (2.4 mmol) of Furazolidone metabolites AOZ, at 60 ~ 70 reaction 2h, the reaction was completed, cooled to room temperature, filtered to give 0.32g furazolidone metabolite haptens. The structural formula III of the hapten and the synthetic route thereof are shown in FIG. 1.

As the paragraph descriping shows that 80-65-9 is playing an increasingly important role.

Reference£º
Patent; Guangzhou Runkun Biological Technology Co., Ltd.; Hu Rui; Li Bin; (14 pag.)CN106866568; (2017); A;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

New learning discoveries about 2346-26-1

As the paragraph descriping shows that 2346-26-1 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.2346-26-1,Oxazolidine-2,4-dione,as a common compound, the synthetic route is as follows.

WORKING EXAMPLE 15 In substantially the same manner as in Working Example 11, (E,E)-5-[3-methoxy-4-(5-methyl-2-phenyl-4-oxazolylmethoxy)phenyl]-2,4-pentadien-1-al was condensed with 2,4-oxazolidinedione. The condensate was subjected to catalytic hydrogenation to yield 5-[5-[3-methoxy-4-(5-methyl-2-phenyl-4-oxazolylmethoxy)phenyl]pentyl]-2,4-oxazolidinedione. The product was recrystallized from dichloromethane-ether to give colorless prisms, m.p.114-115 C., 2346-26-1

As the paragraph descriping shows that 2346-26-1 is playing an increasingly important role.

Reference£º
Patent; Takeda Chemical Industries, Ltd.; US5932601; (1999); A;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

New learning discoveries about 95530-58-8

As the paragraph descriping shows that 95530-58-8 is playing an increasingly important role.

95530-58-8,With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.95530-58-8,(R)-4-Isopropyloxazolidin-2-one,as a common compound, the synthetic route is as follows.

caproyl chloride is reacted with the Evans valine-derived oxazolidinone, (R)-4-isopropyloxazolidin-2-one, and n-butylLi (Step a). The resulting adduct (2) is reacted by aldol condensation with a chiral aldehyde derived from (S)-(-)-lactic acid (3) in the presence of dibutyl-BOTf and triethylamine (Step b). The 4-hydroxyl group of the resulting adduct (4) is protected as a t-butyldimethylsilyl ether (using TBS chloride and DIEA), followed by peroxide-mediated hydrolysis (using hydrogen peroxide and lithium hydroxide) of the chiral auxiliary to yield the differentially protected dihydroxy pentanoic acid (5) (Steps c and d). Differential protection of the two secondary alcohols allows for the incorporation of various carboxylic acids at the 3 position of the lactone. The carboxylic acid is coupled to N-FMOC-L-threonine benzyl ester with BOP-chloride and DMAP (Step e). Removal of the two benzyl protecting groups with H2 and Pd/O will yield the dilactone seco-acid (6) (Step f). Lactonization occurs using a BOP-Cl mediated ester-forming reaction with DMAP (Step g). Diethylamine is used to remove the FMOC protecting group to yield the dilactone (7) (Step h). N-formyl-3-amine salicylic acid is coupled to the dilactone using standard carbodiimide chemistry (Step i). In particular, the dilactone is combined with N-formyl-3-aminosalicylic acid using EDCl and HOBT, followed by treatment with TBAF. The final elaboration of the derivatized antimycin A3 structure is accomplished by fluoride-mediated removal of the silyl protecting group and coupling of the desired acid chloride (e.g., isobutyryl chloride and DIEA) (Steps j and k).

As the paragraph descriping shows that 95530-58-8 is playing an increasingly important role.

Reference£º
Patent; Fred Hutchinson Cancer Research Center; US2005/239873; (2005); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

Analyzing the synthesis route of 2346-26-1

The synthetic route of 2346-26-1 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.2346-26-1,Oxazolidine-2,4-dione,as a common compound, the synthetic route is as follows.

A solution of 3 g (11.90 mmol) of 1-(4-bromobutyl)-1H-indole, prepared in stage 2.1., of 2.41 g (23.80 mmol) of 1,3-oxazolidin-2,4-dione (J. Med. Chem., 1991, 34, 1538-1544) and of 2.74 g (23.80 mmol) of 1,1,3,3-tetramethylguanidine in 30 ml of tetrahydrofuran is brought to reflux for 14 hours under an inert atmosphere. The mixture is concentrated under reduced pressure. The residue is taken up in ethyl acetate and water, the aqueous phase is separated and extracted twice with ethyl acetate, and the combined organic phases are washed with a saturated aqueous sodium chloride solution and dried over sodium sulphate. After evaporation of the solvent, the residue obtained is purified by chromatography on silica gel, elution being carried out with a 10/90 and then 20/80 mixture of ethyl acetate and of cyclohexane. 2 g of product are obtained in the form of a white solid., 2346-26-1

The synthetic route of 2346-26-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; SANOFI-AVENTIS; US2007/21426; (2007); A1;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem

 

New learning discoveries about 2346-26-1

As the paragraph descriping shows that 2346-26-1 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.2346-26-1,Oxazolidine-2,4-dione,as a common compound, the synthetic route is as follows.

2346-26-1, C. 3-Triphenylmethyl-2,4-oxazolidinedione To a solution of 600 mg of 2,4-oxazolidinedione and 601 mg of triethylamine in 7.0 ml of chloroform was added 1.66 g of triphenyl chloromethane and the reaction mixture stirred at room temperature for 30 minutes. The resulting mixture was dissolved in 250 ml of ethyl acetate and washed with water (3 x 50 ml) and brine (2 x 20 ml) and dried over sodium sulfate. Removal of the solvent gave 1.8 g of the desired product.

As the paragraph descriping shows that 2346-26-1 is playing an increasingly important role.

Reference£º
Patent; PFIZER INC.; EP428312; (1991); A2;,
Oxazolidine – Wikipedia
Oxazolidine | C3H7NO – PubChem